IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v49y2001i5p732-743.html
   My bibliography  Save this article

New Two-Stage and Sequential Procedures for Selecting the Best Simulated System

Author

Listed:
  • Stephen E. Chick

    (Department of Industrial and Operations Engineering, The University of Michigan, 1205 Beal Avenue, Ann Arbor, Michigan, 48109-2117)

  • Koichiro Inoue

    (Department of Industrial and Operations Engineering, The University of Michigan, 1205 Beal Avenue, Ann Arbor, Michigan, 48109-2117)

Abstract

Standard “indifference-zone” procedures that allocate computer resources to infer the best of a finite set of simulated systems are designed with a statistically conservative, least favorable configuration assumption consider the probability of correct selection (but not the opportunity cost) and assume that the cost of simulating each system is the same. Recent Bayesian work considers opportunity cost and shows that an average case analysis may be less conservative but assumes a known output variance, an assumption that typically is violated in simulation. This paper presents new two-stage and sequential selection procedures that integrate attractive features of both lines of research. They are derived assuming that the simulation output is normally distributed with unknown mean and variance that may differ for each system. We permit the reduction of either opportunity cost loss or the probability of incorrect selection and allow for different replication costs for each system. The generality of our formulation comes at the expense of difficulty in obtaining exact closed-form solutions. We therefore derive a bound for the expected loss associated potentially incorrect selections, then asymptotically minimize that bound. Theoretical and empirical results indicate that our approach compares favorably with indifference-zone procedures.

Suggested Citation

  • Stephen E. Chick & Koichiro Inoue, 2001. "New Two-Stage and Sequential Procedures for Selecting the Best Simulated System," Operations Research, INFORMS, vol. 49(5), pages 732-743, October.
  • Handle: RePEc:inm:oropre:v:49:y:2001:i:5:p:732-743
    DOI: 10.1287/opre.49.5.732.10615
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.49.5.732.10615
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.49.5.732.10615?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Barry L. Nelson & Frank J. Matejcik, 1995. "Using Common Random Numbers for Indifference-Zone Selection and Multiple Comparisons in Simulation," Management Science, INFORMS, vol. 41(12), pages 1935-1945, December.
    2. Frank J. Matejcik & Barry L. Nelson, 1995. "Two-Stage Multiple Comparisons with the Best for Computer Simulation," Operations Research, INFORMS, vol. 43(4), pages 633-640, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barry L. Nelson & David Goldsman, 2001. "Comparisons with a Standard in Simulation Experiments," Management Science, INFORMS, vol. 47(3), pages 449-463, March.
    2. Nakayama, Marvin K., 2007. "Fixed-width multiple-comparison procedures using common random numbers for steady-state simulations," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1330-1349, November.
    3. Oliver Hinz & Jochen Eckert, 2010. "The Impact of Search and Recommendation Systems on Sales in Electronic Commerce," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 2(2), pages 67-77, April.
    4. Michael C. Fu & Jian-Qiang Hu & Chun-Hung Chen & Xiaoping Xiong, 2007. "Simulation Allocation for Determining the Best Design in the Presence of Correlated Sampling," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 101-111, February.
    5. Francis, Peter & Zhang, Guangming & Smilowitz, Karen, 2007. "Improved modeling and solution methods for the multi-resource routing problem," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1045-1059, August.
    6. Wang, Honggang, 2012. "Retrospective optimization of mixed-integer stochastic systems using dynamic simplex linear interpolation," European Journal of Operational Research, Elsevier, vol. 217(1), pages 141-148.
    7. Stephen E. Chick & Koichiro Inoue, 2001. "New Procedures to Select the Best Simulated System Using Common Random Numbers," Management Science, INFORMS, vol. 47(8), pages 1133-1149, August.
    8. Anton J. Kleywegt & Vijay S. Nori & Martin W. P. Savelsbergh, 2002. "The Stochastic Inventory Routing Problem with Direct Deliveries," Transportation Science, INFORMS, vol. 36(1), pages 94-118, February.
    9. Sigurdur Ólafsson, 2004. "Two-Stage Nested Partitions Method for Stochastic Optimization," Methodology and Computing in Applied Probability, Springer, vol. 6(1), pages 5-27, March.
    10. Diana M. Negoescu & Peter I. Frazier & Warren B. Powell, 2011. "The Knowledge-Gradient Algorithm for Sequencing Experiments in Drug Discovery," INFORMS Journal on Computing, INFORMS, vol. 23(3), pages 346-363, August.
    11. Barry L. Nelson & Julie Swann & David Goldsman & Wheyming Song, 2001. "Simple Procedures for Selecting the Best Simulated System When the Number of Alternatives is Large," Operations Research, INFORMS, vol. 49(6), pages 950-963, December.
    12. Huashuai Qu & Ilya O. Ryzhov & Michael C. Fu & Zi Ding, 2015. "Sequential Selection with Unknown Correlation Structures," Operations Research, INFORMS, vol. 63(4), pages 931-948, August.
    13. Tsai, Shing Chih, 2011. "Selecting the best simulated system with weighted control-variate estimators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 705-717.
    14. Jacobson, Sheldon H. & McLay, Laura A., 2009. "Applying statistical tests to empirically compare tabu search parameters for MAX 3-SATISFIABILITY: A case study," Omega, Elsevier, vol. 37(3), pages 522-534, June.
    15. Rafiei, Rezvan & Nourelfath, Mustapha & Gaudreault, Jonathan & De Santa-Eulalia, Luis Antonio & Bouchard, Mathieu, 2015. "Dynamic safety stock in co-production demand-driven wood remanufacturing mills: A case study," International Journal of Production Economics, Elsevier, vol. 165(C), pages 90-99.
    16. Eric C. Ni & Dragos F. Ciocan & Shane G. Henderson & Susan R. Hunter, 2017. "Efficient Ranking and Selection in Parallel Computing Environments," Operations Research, INFORMS, vol. 65(3), pages 821-836, June.
    17. Anton J. Kleywegt & Vijay S. Nori & Martin W. P. Savelsbergh, 2004. "Dynamic Programming Approximations for a Stochastic Inventory Routing Problem," Transportation Science, INFORMS, vol. 38(1), pages 42-70, February.
    18. Stephen E. Chick & Yaozhong Wu, 2005. "Selection Procedures with Frequentist Expected Opportunity Cost Bounds," Operations Research, INFORMS, vol. 53(5), pages 867-878, October.
    19. Siyang Gao & Weiwei Chen & Leyuan Shi, 2017. "A New Budget Allocation Framework for the Expected Opportunity Cost," Operations Research, INFORMS, vol. 65(3), pages 787-803, June.
    20. Eunhye Song & Barry L. Nelson, 2019. "Input–Output Uncertainty Comparisons for Discrete Optimization via Simulation," Operations Research, INFORMS, vol. 67(2), pages 562-576, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:49:y:2001:i:5:p:732-743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.