IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v60y2012i2p429-446.html
   My bibliography  Save this article

Approximating the Nonlinear Newsvendor and Single-Item Stochastic Lot-Sizing Problems When Data Is Given by an Oracle

Author

Listed:
  • Nir Halman

    (Jerusalem School of Business Administration, The Hebrew University, 91905 Jerusalem, Israel; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

  • James B. Orlin

    (Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

  • David Simchi-Levi

    (Department of Civil and Environmental Engineering and Division of Engineering Systems, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

Abstract

The single-item stochastic lot-sizing problem is to find an inventory replenishment policy in the presence of discrete stochastic demands under periodic review and finite time horizon. A closely related problem is the single-period newsvendor model. It is well known that the newsvendor problem admits a closed formula for the optimal order quantity whenever the revenue and salvage values are linear increasing functions and the procurement (ordering) cost is fixed plus linear. The optimal policy for the single-item lot-sizing model is also well known under similar assumptions.In this paper we show that the classical (single-period) newsvendor model with fixed plus linear ordering cost cannot be approximated to any degree of accuracy when either the demand distribution or the cost functions are given by an oracle. We provide a fully polynomial time approximation scheme for the nonlinear single-item stochastic lot-sizing problem, when demand distribution is given by an oracle, procurement costs are provided as nondecreasing oracles, holding/backlogging/disposal costs are linear, and lead time is positive. Similar results exist for the nonlinear newsvendor problem. These approximation schemes are designed by extending the technique of K -approximation sets and functions.

Suggested Citation

  • Nir Halman & James B. Orlin & David Simchi-Levi, 2012. "Approximating the Nonlinear Newsvendor and Single-Item Stochastic Lot-Sizing Problems When Data Is Given by an Oracle," Operations Research, INFORMS, vol. 60(2), pages 429-446, April.
  • Handle: RePEc:inm:oropre:v:60:y:2012:i:2:p:429-446
    DOI: 10.1287/opre.1110.1031
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1110.1031
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1110.1031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Retsef Levi & Martin Pál & Robin O. Roundy & David B. Shmoys, 2007. "Approximation Algorithms for Stochastic Inventory Control Models," Mathematics of Operations Research, INFORMS, vol. 32(2), pages 284-302, May.
    2. Ng, C.T. & Kovalyov, Mikhail Y. & Cheng, T.C.E., 2010. "A simple FPTAS for a single-item capacitated economic lot-sizing problem with a monotone cost structure," European Journal of Operational Research, Elsevier, vol. 200(2), pages 621-624, January.
    3. Retsef Levi & Robin O. Roundy & David B. Shmoys & Van Anh Truong, 2008. "Approximation Algorithms for Capacitated Stochastic Inventory Control Models," Operations Research, INFORMS, vol. 56(5), pages 1184-1199, October.
    4. M. Florian & J. K. Lenstra & A. H. G. Rinnooy Kan, 1980. "Deterministic Production Planning: Algorithms and Complexity," Management Science, INFORMS, vol. 26(7), pages 669-679, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linwei Xin & David A. Goldberg, 2016. "Optimality Gap of Constant-Order Policies Decays Exponentially in the Lead Time for Lost Sales Models," Operations Research, INFORMS, vol. 64(6), pages 1556-1565, December.
    2. Halman, Nir & Kellerer, Hans & Strusevich, Vitaly A., 2018. "Approximation schemes for non-separable non-linear boolean programming problems under nested knapsack constraints," European Journal of Operational Research, Elsevier, vol. 270(2), pages 435-447.
    3. Levi DeValve & Saša Pekeč & Yehua Wei, 2020. "A Primal-Dual Approach to Analyzing ATO Systems," Management Science, INFORMS, vol. 66(11), pages 5389-5407, November.
    4. Liu, Congzheng & Letchford, Adam N. & Svetunkov, Ivan, 2022. "Newsvendor problems: An integrated method for estimation and optimisation," European Journal of Operational Research, Elsevier, vol. 300(2), pages 590-601.
    5. David A. Goldberg & Dmitriy A. Katz-Rogozhnikov & Yingdong Lu & Mayank Sharma & Mark S. Squillante, 2016. "Asymptotic Optimality of Constant-Order Policies for Lost Sales Inventory Models with Large Lead Times," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 898-913, August.
    6. Nir Halman, 2020. "Provably Near-Optimal Approximation Schemes for Implicit Stochastic and Sample-Based Dynamic Programs," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 1157-1181, October.
    7. Hanzhang Qin & David Simchi-Levi & Li Wang, 2022. "Data-Driven Approximation Schemes for Joint Pricing and Inventory Control Models," Management Science, INFORMS, vol. 68(9), pages 6591-6609, September.
    8. Chung-Lun Li & Qingying Li, 2016. "Polynomial-Time Solvability of Dynamic Lot Size Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(03), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamed Mamani & Shima Nassiri & Michael R. Wagner, 2017. "Closed-Form Solutions for Robust Inventory Management," Management Science, INFORMS, vol. 63(5), pages 1625-1643, May.
    2. Gurkan, M. Edib & Tunc, Huseyin & Tarim, S. Armagan, 2022. "The joint stochastic lot sizing and pricing problem," Omega, Elsevier, vol. 108(C).
    3. Chung-Lun Li & Qingying Li, 2016. "Polynomial-Time Solvability of Dynamic Lot Size Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(03), pages 1-20, June.
    4. Huaxiao Shen & Tian Tian & Han Zhu, 2019. "A Two-Echelon Inventory System with a Minimum Order Quantity Requirement," Sustainability, MDPI, vol. 11(18), pages 1-22, September.
    5. Nasr, Walid W. & Elshar, Ibrahim J., 2018. "Continuous inventory control with stochastic and non-stationary Markovian demand," European Journal of Operational Research, Elsevier, vol. 270(1), pages 198-217.
    6. Cong Shi & Huanan Zhang & Xiuli Chao & Retsef Levi, 2014. "Approximation algorithms for capacitated stochastic inventory systems with setup costs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(4), pages 304-319, June.
    7. Leon Yang Chu & Zuo-Jun Max Shen, 2010. "A Power-of-Two Ordering Policy for One-Warehouse Multiretailer Systems with Stochastic Demand," Operations Research, INFORMS, vol. 58(2), pages 492-502, April.
    8. Brahimi, Nadjib & Absi, Nabil & Dauzère-Pérès, Stéphane & Nordli, Atle, 2017. "Single-item dynamic lot-sizing problems: An updated survey," European Journal of Operational Research, Elsevier, vol. 263(3), pages 838-863.
    9. David A. Goldberg & Martin I. Reiman & Qiong Wang, 2021. "A Survey of Recent Progress in the Asymptotic Analysis of Inventory Systems," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1718-1750, June.
    10. Akbalik, Ayse & Hadj-Alouane, Atidel B. & Sauer, Nathalie & Ghribi, Houcem, 2017. "NP-hard and polynomial cases for the single-item lot sizing problem with batch ordering under capacity reservation contract," European Journal of Operational Research, Elsevier, vol. 257(2), pages 483-493.
    11. Retsef Levi & Ganesh Janakiraman & Mahesh Nagarajan, 2008. "A 2-Approximation Algorithm for Stochastic Inventory Control Models with Lost Sales," Mathematics of Operations Research, INFORMS, vol. 33(2), pages 351-374, May.
    12. Huanan Zhang & Cong Shi & Chao Qin & Cheng Hua, 2016. "Stochastic regret minimization for revenue management problems with nonstationary demands," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(6), pages 433-448, September.
    13. Zhijie Tao & Sean X. Zhou, 2014. "Approximation Balancing Policies for Inventory Systems with Remanufacturing," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1179-1197, November.
    14. Retsef Levi & Robin Roundy & Van Anh Truong & Xinshang Wang, 2017. "Provably Near-Optimal Balancing Policies for Multi-Echelon Stochastic Inventory Control Models," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 256-276, January.
    15. Nir Halman & Diego Klabjan & Mohamed Mostagir & Jim Orlin & David Simchi-Levi, 2009. "A Fully Polynomial-Time Approximation Scheme for Single-Item Stochastic Inventory Control with Discrete Demand," Mathematics of Operations Research, INFORMS, vol. 34(3), pages 674-685, August.
    16. Ming Zhao & Minjiao Zhang, 2020. "Multiechelon Lot Sizing: New Complexities and Inequalities," Operations Research, INFORMS, vol. 68(2), pages 534-551, March.
    17. Jenny Carolina Saldana Cortés, 2011. "Programación semidefinida aplicada a problemas de cantidad económica de pedido," Documentos CEDE 8735, Universidad de los Andes, Facultad de Economía, CEDE.
    18. Stan van Hoesel & H. Edwin Romeijn & Dolores Romero Morales & Albert P. M. Wagelmans, 2005. "Integrated Lot Sizing in Serial Supply Chains with Production Capacities," Management Science, INFORMS, vol. 51(11), pages 1706-1719, November.
    19. Toy, Ayhan Özgür & Berk, Emre, 2013. "Dynamic lot sizing for a warm/cold process: Heuristics and insights," International Journal of Production Economics, Elsevier, vol. 145(1), pages 53-66.
    20. Awi Federgruen & Joern Meissner & Michal Tzur, 2007. "Progressive Interval Heuristics for Multi-Item Capacitated Lot-Sizing Problems," Operations Research, INFORMS, vol. 55(3), pages 490-502, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:60:y:2012:i:2:p:429-446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.