IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v59y2011i5p1297-1303.html
   My bibliography  Save this article

TECHNICAL NOTE---A Computational Approach for Optimal Joint Inventory-Pricing Control in an Infinite-Horizon Periodic-Review System

Author

Listed:
  • Youyi Feng

    (Department of Management Science, The City University of Hong Kong, Hong Kong; Zaragoza Logistics Center, Zaragoza, Spain)

  • Youhua (Frank) Chen

    (Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Hong Kong)

Abstract

This note considers a joint inventory-pricing control problem in an infinite-horizon periodic-review system. Demand in a period is random and depends on the posted price. Besides the holding and shortage costs, the system incurs inventory-replenishment costs that consist of both variable and fixed components. At the beginning of each period, a joint inventory and pricing decision is made. Under the long-run average profit criterion, we show that an optimal policy exists within the class of so-called ( s , S , p ) policies. This is established based on our algorithmic development, which also results in an algorithm for finding an optimal ( s , S , p ) policy.

Suggested Citation

  • Youyi Feng & Youhua (Frank) Chen, 2011. "TECHNICAL NOTE---A Computational Approach for Optimal Joint Inventory-Pricing Control in an Infinite-Horizon Periodic-Review System," Operations Research, INFORMS, vol. 59(5), pages 1297-1303, October.
  • Handle: RePEc:inm:oropre:v:59:y:2011:i:5:p:1297-1303
    DOI: 10.1287/opre.1110.0984
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1110.0984
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1110.0984?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuyue Song & Saibal Ray & Tamer Boyaci, 2009. "Technical Note---Optimal Dynamic Joint Inventory-Pricing Control for Multiplicative Demand with Fixed Order Costs and Lost Sales," Operations Research, INFORMS, vol. 57(1), pages 245-250, February.
    2. Yu-Sheng Zheng & A. Federgruen, 1991. "Finding Optimal (s, S) Policies Is About As Simple As Evaluating a Single Policy," Operations Research, INFORMS, vol. 39(4), pages 654-665, August.
    3. Arthur F. Veinott, Jr. & Harvey M. Wagner, 1965. "Computing Optimal (s, S) Inventory Policies," Management Science, INFORMS, vol. 11(5), pages 525-552, March.
    4. Youhua (Frank) Chen & Saibal Ray & Yuyue Song, 2006. "Optimal pricing and inventory control policy in periodic‐review systems with fixed ordering cost and lost sales," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(2), pages 117-136, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brenda Cheang & Samuel Kai Wah Chu & Chongshou Li & Andrew Lim, 2014. "OR/MS journals evaluation based on a refined PageRank method: an updated and more comprehensive review," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(2), pages 339-361, August.
    2. Hong Chen & Zhan Zhang, 2014. "Technical Note—Joint Inventory and Pricing Control with General Additive Demand," Operations Research, INFORMS, vol. 62(6), pages 1335-1343, December.
    3. Van Foreest, Nicky D. & Kilic, Onur A., 2023. "An intuitive approach to inventory control with optimal stopping," European Journal of Operational Research, Elsevier, vol. 311(3), pages 921-924.
    4. Fernando Bernstein & Yang Li & Kevin Shang, 2016. "A Simple Heuristic for Joint Inventory and Pricing Models with Lead Time and Backorders," Management Science, INFORMS, vol. 62(8), pages 2358-2373, August.
    5. Ying Wei, 2020. "Optimizing constant pricing and inventory decisions for a periodic review system with batch ordering," Annals of Operations Research, Springer, vol. 291(1), pages 939-957, August.
    6. Gan, Xianghua & Sethi, Suresh P. & Xu, Liang, 2019. "Simultaneous Optimization of Contingent and Advance Purchase Orders with Fixed Ordering Costs," Omega, Elsevier, vol. 89(C), pages 227-241.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Sha & Ahiska, S. Sebnem & Fang, Shu-Cherng & King, Russell E. & Warsing, Donald P. & Wu, Shuohao, 2021. "An analysis of optimal ordering policies for a two-supplier system with disruption risk," Omega, Elsevier, vol. 105(C).
    2. Bijvank, Marco & Vis, Iris F.A., 2011. "Lost-sales inventory theory: A review," European Journal of Operational Research, Elsevier, vol. 215(1), pages 1-13, November.
    3. Tovey C. Bachman & Pamela J. Williams & Kristen M. Cheman & Jeffrey Curtis & Robert Carroll, 2016. "PNG: Effective Inventory Control for Items with Highly Variable Demand," Interfaces, INFORMS, vol. 46(1), pages 18-32, February.
    4. Chiang, Chi, 2007. "Optimal ordering policies for periodic-review systems with a refined intra-cycle time scale," European Journal of Operational Research, Elsevier, vol. 177(2), pages 872-881, March.
    5. Gurkan, M. Edib & Tunc, Huseyin & Tarim, S. Armagan, 2022. "The joint stochastic lot sizing and pricing problem," Omega, Elsevier, vol. 108(C).
    6. Huang, Boray & Wu, Andy, 2017. "Reduce shortage with self-reservation policy for a manufacturer paying both fixed and variable stockout expenditure," European Journal of Operational Research, Elsevier, vol. 262(3), pages 944-953.
    7. Awi Federgruen & Min Wang, 2015. "Inventory Models with Shelf-Age and Delay-Dependent Inventory Costs," Operations Research, INFORMS, vol. 63(3), pages 701-715, June.
    8. Qi Feng & Sirong Luo & J. George Shanthikumar, 2020. "Integrating Dynamic Pricing with Inventory Decisions Under Lost Sales," Management Science, INFORMS, vol. 66(5), pages 2232-2247, May.
    9. Bazsa-Oldenkamp, E.M. & den Iseger, P., 2002. "Optimal continuous order quantity (s,S) policies; the 45-degrees algorithm," Econometric Institute Research Papers EI 2002-47, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    10. Emöke Bázsa & Peter den Iseger, 2001. "Optimal Continuous Order Quantity (s,s) Policies," Tinbergen Institute Discussion Papers 01-102/4, Tinbergen Institute.
    11. Li, Yang & Liu, Feng, 2021. "Joint inventory and pricing control with lagged price responses," International Journal of Production Economics, Elsevier, vol. 241(C).
    12. Yu‐Sheng Zheng & Fangruo Chen, 1992. "Inventory policies with quantized ordering," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(3), pages 285-305, April.
    13. Li, Xiaoming, 2010. "Optimal inventory policies in decentralized supply chains," International Journal of Production Economics, Elsevier, vol. 128(1), pages 303-309, November.
    14. Bazsa-Oldenkamp, E.M. & den Iseger, P., 2003. "Optimal continuous order quantity (s,S) policies - the 45-degrees algorithm," Econometric Institute Research Papers EI 2002-47, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    15. Sandun C. Perera & Suresh P. Sethi, 2023. "A survey of stochastic inventory models with fixed costs: Optimality of (s, S) and (s, S)‐type policies—Discrete‐time case," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 131-153, January.
    16. Tarim, S. Armagan & Smith, Barbara M., 2008. "Constraint programming for computing non-stationary (R, S) inventory policies," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1004-1021, September.
    17. Xiang, Mengyuan & Rossi, Roberto & Martin-Barragan, Belen & Tarim, S. Armagan, 2018. "Computing non-stationary (s, S) policies using mixed integer linear programming," European Journal of Operational Research, Elsevier, vol. 271(2), pages 490-500.
    18. Sechan Oh & Karthik Sourirajan & Markus Ettl, 2014. "Joint Pricing and Production Decisions in an Assemble-to-Order System," Manufacturing & Service Operations Management, INFORMS, vol. 16(4), pages 529-543, October.
    19. Srinivas Bollapragada & Thomas E. Morton, 1999. "A Simple Heuristic for Computing Nonstationary (s, S) Policies," Operations Research, INFORMS, vol. 47(4), pages 576-584, August.
    20. Youhua (Frank) Chen & Ye Lu & Minghui Xu, 2012. "Optimal inventory control policy for periodic‐review inventory systems with inventory‐level‐dependent demand," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(6), pages 430-440, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:59:y:2011:i:5:p:1297-1303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.