IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v50y2002i1p78-81.html
   My bibliography  Save this article

Early Integer Programming

Author

Listed:
  • Ralph E. Gomory

Abstract

No abstract is available for this item.

Suggested Citation

  • Ralph E. Gomory, 2002. "Early Integer Programming," Operations Research, INFORMS, vol. 50(1), pages 78-81, February.
  • Handle: RePEc:inm:oropre:v:50:y:2002:i:1:p:78-81
    DOI: 10.1287/opre.50.1.78.17793
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.50.1.78.17793
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.50.1.78.17793?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. P. C. Gilmore & R. E. Gomory, 1966. "The Theory and Computation of Knapsack Functions," Operations Research, INFORMS, vol. 14(6), pages 1045-1074, December.
    2. P. C. Gilmore & R. E. Gomory, 1961. "A Linear Programming Approach to the Cutting-Stock Problem," Operations Research, INFORMS, vol. 9(6), pages 849-859, December.
    3. P. C. Gilmore & R. E. Gomory, 1963. "A Linear Programming Approach to the Cutting Stock Problem---Part II," Operations Research, INFORMS, vol. 11(6), pages 863-888, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Yaodong & Gu, Tianlong & Hu, Wei, 2009. "A cutting-and-inventory control problem in the manufacturing industry of stainless steel wares," Omega, Elsevier, vol. 37(4), pages 864-875, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Becker, Henrique & Buriol, Luciana S., 2019. "An empirical analysis of exact algorithms for the unbounded knapsack problem," European Journal of Operational Research, Elsevier, vol. 277(1), pages 84-99.
    2. Gomory, Ralph, 2016. "Origin and early evolution of corner polyhedra," European Journal of Operational Research, Elsevier, vol. 253(3), pages 543-556.
    3. Yuen, Boon J., 1995. "Improved heuristics for sequencing cutting patterns," European Journal of Operational Research, Elsevier, vol. 87(1), pages 57-64, November.
    4. Song, X. & Chu, C.B. & Nie, Y.Y. & Bennell, J.A., 2006. "An iterative sequential heuristic procedure to a real-life 1.5-dimensional cutting stock problem," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1870-1889, December.
    5. Ben Messaoud, Said & Chu, Chengbin & Espinouse, Marie-Laure, 2008. "Characterization and modelling of guillotine constraints," European Journal of Operational Research, Elsevier, vol. 191(1), pages 112-126, November.
    6. Vera Neidlein & Andrèa C. G. Vianna & Marcos N. Arenales & Gerhard Wäscher, 2008. "The Two-Dimensional, Rectangular, Guillotineable-Layout Cutting Problem with a Single Defect," FEMM Working Papers 08035, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    7. Hoto, Robinson & Arenales, Marcos & Maculan, Nelson, 2007. "The one dimensional Compartmentalised Knapsack Problem: A case study," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1183-1195, December.
    8. Wang, Danni & Xiao, Fan & Zhou, Lei & Liang, Zhe, 2020. "Two-dimensional skiving and cutting stock problem with setup cost based on column-and-row generation," European Journal of Operational Research, Elsevier, vol. 286(2), pages 547-563.
    9. François Clautiaux & Cláudio Alves & José Valério de Carvalho & Jürgen Rietz, 2011. "New Stabilization Procedures for the Cutting Stock Problem," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 530-545, November.
    10. Milind Dawande & Jayant Kalagnanam & Ho Soo Lee & Chandra Reddy & Stuart Siegel & Mark Trumbo, 2004. "The Slab-Design Problem in the Steel Industry," Interfaces, INFORMS, vol. 34(3), pages 215-225, June.
    11. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    12. Omid Shahvari & Rasaratnam Logendran & Madjid Tavana, 2022. "An efficient model-based branch-and-price algorithm for unrelated-parallel machine batching and scheduling problems," Journal of Scheduling, Springer, vol. 25(5), pages 589-621, October.
    13. Letchford, Adam N. & Amaral, Andre, 2001. "Analysis of upper bounds for the Pallet Loading Problem," European Journal of Operational Research, Elsevier, vol. 132(3), pages 582-593, August.
    14. Melega, Gislaine Mara & de Araujo, Silvio Alexandre & Jans, Raf, 2018. "Classification and literature review of integrated lot-sizing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 1-19.
    15. Alfieri, Arianna & van de Velde, Steef & Woeginger, Gerhard J., 2007. "Roll cutting in the curtain industry, or: A well-solvable allocation problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1397-1404, December.
    16. W. D. D. Madhavee & N. Saldin & U. C. Vaidyarathna & C. J. Jayawardene, 2018. "A Practical Application of the Generalized Cutting Stock Algorithm," Academic Journal of Applied Mathematical Sciences, Academic Research Publishing Group, vol. 4(3), pages 15-21, 03-2018.
    17. Suliman, S.M.A., 2006. "A sequential heuristic procedure for the two-dimensional cutting-stock problem," International Journal of Production Economics, Elsevier, vol. 99(1-2), pages 177-185, February.
    18. Arbib, Claudio & Marinelli, Fabrizio, 2005. "Integrating process optimization and inventory planning in cutting-stock with skiving option: An optimization model and its application," European Journal of Operational Research, Elsevier, vol. 163(3), pages 617-630, June.
    19. Chengbin Chu & Julien Antonio, 1999. "Approximation Algorithms to Solve Real-Life Multicriteria Cutting Stock Problems," Operations Research, INFORMS, vol. 47(4), pages 495-508, August.
    20. Alain S. Sutter & François Vanderbeck & Laurence Wolsey, 1998. "Optimal Placement of Add/Drop Multiplexers: Heuristic and Exact Algorithms," Operations Research, INFORMS, vol. 46(5), pages 719-728, October.

    More about this item

    Keywords

    Professional: comments on;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:50:y:2002:i:1:p:78-81. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.