IDEAS home Printed from https://ideas.repec.org/a/inm/ormoor/v45y2020i3p923-946.html
   My bibliography  Save this article

General Error Estimates for the Longstaff–Schwartz Least-Squares Monte Carlo Algorithm

Author

Listed:
  • Daniel Z. Zanger

    (California Science and Technology University, Milpitas, California 95035)

Abstract

We establish error estimates for the Longstaff–Schwartz algorithm, employing just a single set of independent Monte Carlo sample paths that is reused for all exercise time steps. We obtain, within the context of financial derivative payoff functions bounded according to the uniform norm, new bounds on the stochastic part of the error of this algorithm for an approximation architecture that may be any arbitrary set of L 2 functions of finite Vapnik–Chervonenkis (VC) dimension whenever the algorithm’s least-squares regression optimization step is solved either exactly or approximately. Moreover, we show how to extend these estimates to the case of payoff functions bounded only in L p , p a real number greater than 2 < p < ∞ . We also establish new overall error bounds for the Longstaff–Schwartz algorithm, including estimates on the approximation error also for unconstrained linear, finite-dimensional polynomial approximation. Our results here extend those in the literature by not imposing any uniform boundedness condition on the approximation architectures, allowing each of them to be any set of L 2 functions of finite VC dimension and by establishing error estimates as well in the case of ɛ-additive approximate least-squares optimization, ɛ greater than or equal to 0.

Suggested Citation

  • Daniel Z. Zanger, 2020. "General Error Estimates for the Longstaff–Schwartz Least-Squares Monte Carlo Algorithm," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 923-946, August.
  • Handle: RePEc:inm:ormoor:v:45:y:2020:i:3:p:923-946
    DOI: 10.1287/moor.2019.1017
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/moor.2019.1017
    Download Restriction: no

    File URL: https://libkey.io/10.1287/moor.2019.1017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Daniel Z. Zanger, 2018. "Convergence Of A Least†Squares Monte Carlo Algorithm For American Option Pricing With Dependent Sample Data," Mathematical Finance, Wiley Blackwell, vol. 28(1), pages 447-479, January.
    3. Lars Stentoft, 2004. "Convergence of the Least Squares Monte Carlo Approach to American Option Valuation," Management Science, INFORMS, vol. 50(9), pages 1193-1203, September.
    4. Philip Protter & Emmanuelle Clément & Damien Lamberton, 2002. "An analysis of a least squares regression method for American option pricing," Finance and Stochastics, Springer, vol. 6(4), pages 449-471.
    5. Daniel Zanger, 2009. "Convergence of a Least-Squares Monte Carlo Algorithm for Bounded Approximating Sets," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(2), pages 123-150.
    6. Daniel Zanger, 2013. "Quantitative error estimates for a least-squares Monte Carlo algorithm for American option pricing," Finance and Stochastics, Springer, vol. 17(3), pages 503-534, July.
    7. Denis Belomestny, 2011. "Pricing Bermudan options by nonparametric regression: optimal rates of convergence for lower estimates," Finance and Stochastics, Springer, vol. 15(4), pages 655-683, December.
    8. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    9. L.A. Abbas-Turki & S. Vialle & Bernard Lapeyre & P. Mercier, 2014. "Pricing derivatives on graphics processing units using Monte Carlo simulation," Post-Print hal-01667067, HAL.
    10. Lars Stentoft, 2004. "Assessing the Least Squares Monte-Carlo Approach to American Option Valuation," Review of Derivatives Research, Springer, vol. 7(2), pages 129-168, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiyi Shen & Chengguo Weng, 2019. "A Backward Simulation Method for Stochastic Optimal Control Problems," Papers 1901.06715, arXiv.org.
    2. Fabozzi, Frank J. & Paletta, Tommaso & Tunaru, Radu, 2017. "An improved least squares Monte Carlo valuation method based on heteroscedasticity," European Journal of Operational Research, Elsevier, vol. 263(2), pages 698-706.
    3. Hampus Engsner, 2021. "Least Squares Monte Carlo applied to Dynamic Monetary Utility Functions," Papers 2101.10947, arXiv.org, revised Apr 2021.
    4. Chen Liu & Henry Schellhorn & Qidi Peng, 2019. "American Option Pricing With Regression: Convergence Analysis," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-31, December.
    5. Daniel Zanger, 2013. "Quantitative error estimates for a least-squares Monte Carlo algorithm for American option pricing," Finance and Stochastics, Springer, vol. 17(3), pages 503-534, July.
    6. Nan Chen & Yanchu Liu, 2014. "American Option Sensitivities Estimation via a Generalized Infinitesimal Perturbation Analysis Approach," Operations Research, INFORMS, vol. 62(3), pages 616-632, June.
    7. Maciej Klimek & Marcin Pitera, 2014. "The least squares method for option pricing revisited," Papers 1404.7438, arXiv.org, revised Nov 2015.
    8. Sérgio C. Bezerra & Alberto Ohashi & Francesco Russo & Francys Souza, 2020. "Discrete-type Approximations for Non-Markovian Optimal Stopping Problems: Part II," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 1221-1255, September.
    9. Yi Yang & Jianan Wang & Youhua Chen & Zhiyuan Chen & Yanchu Liu, 2020. "Optimal procurement strategies for contractual assembly systems with fluctuating procurement price," Annals of Operations Research, Springer, vol. 291(1), pages 1027-1059, August.
    10. S'ergio C. Bezerra & Alberto Ohashi & Francesco Russo & Francys de Souza, 2017. "Discrete-type approximations for non-Markovian optimal stopping problems: Part II," Papers 1707.05250, arXiv.org, revised Dec 2019.
    11. Nelson Areal & Artur Rodrigues & Manuel Armada, 2008. "On improving the least squares Monte Carlo option valuation method," Review of Derivatives Research, Springer, vol. 11(1), pages 119-151, March.
    12. Berridge, S.J. & Schumacher, J.M., 2002. "An Irregular Grid Approach for Pricing High Dimensional American Options," Discussion Paper 2002-99, Tilburg University, Center for Economic Research.
    13. Katarzyna Toporek, 2012. "Simple is better. Empirical comparison of American option valuation methods," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 29.
    14. Nordahl, Helge A., 2008. "Valuation of life insurance surrender and exchange options," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 909-919, June.
    15. Alexander Boogert & Cyriel de Jong, 2007. "Gas Storage Valuation Using a Monte Carlo Method," Birkbeck Working Papers in Economics and Finance 0704, Birkbeck, Department of Economics, Mathematics & Statistics.
    16. Zhu, Lei & Zhang, ZhongXiang & Fan, Ying, 2015. "Overseas oil investment projects under uncertainty: How to make informed decisions?," Journal of Policy Modeling, Elsevier, vol. 37(5), pages 742-762.
    17. Joseph Y. J. Chow & Hamid R. Sayarshad, 2016. "Reference Policies for Non-myopic Sequential Network Design and Timing Problems," Networks and Spatial Economics, Springer, vol. 16(4), pages 1183-1209, December.
    18. Hongjun Ha & Daniel Bauer, 2022. "A least-squares Monte Carlo approach to the estimation of enterprise risk," Finance and Stochastics, Springer, vol. 26(3), pages 417-459, July.
    19. Floryszczak, Anthony & Le Courtois, Olivier & Majri, Mohamed, 2016. "Inside the Solvency 2 Black Box: Net Asset Values and Solvency Capital Requirements with a least-squares Monte-Carlo approach," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 15-26.
    20. Denis Belomestny & Maxim Kaledin & John Schoenmakers, 2020. "Semitractability of optimal stopping problems via a weighted stochastic mesh algorithm," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1591-1616, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormoor:v:45:y:2020:i:3:p:923-946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.