IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v67y2021i7p4191-4208.html
   My bibliography  Save this article

A General Framework to Compare Announcement Accuracy: Static vs. LES-Based Announcement

Author

Listed:
  • Achal Bassamboo

    (Kellogg School of Management, Northwestern University, Evanston, Illinois 60208)

  • Rouba Ibrahim

    (School of Management, University College London, London E14 5AB, United Kingdom)

Abstract

Service providers often share delay information, in the form of delay announcements, with their customers. In practice, simple delay announcements, such as average waiting times or a weighted average of previously delayed customers, are often used. Our goal in this paper is to gain insight into when such announcements perform well. Specifically, we compare the accuracies of two announcements: (i) a static announcement that does not exploit real-time information about the state of the system and (ii) a dynamic announcement , specifically the last-to-enter-service (LES) announcement, which equals the delay of the last customer to have entered service at the time of the announcement. We propose a novel correlation-based approach that is theoretically appealing because it allows for a comparison of the accuracies of announcements across different queueing models, including multiclass models with a priority service discipline. It is also practically useful because estimating correlations is much easier than fitting an entire queueing model. Using a combination of queueing-theoretic analysis, real-life data analysis, and simulation, we analyze the performance of static and dynamic announcements and derive an appropriate weighted average of the two which we demonstrate has a superior performance using both simulation and data from a call center.

Suggested Citation

  • Achal Bassamboo & Rouba Ibrahim, 2021. "A General Framework to Compare Announcement Accuracy: Static vs. LES-Based Announcement," Management Science, INFORMS, vol. 67(7), pages 4191-4208, July.
  • Handle: RePEc:inm:ormnsc:v:67:y:2021:i:7:p:4191-4208
    DOI: 10.1287/mnsc.2020.3722
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2020.3722
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2020.3722?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Oualid Jouini & O. Zeynep Akşin & Fikri Karaesmen & M. Salah Aguir & Yves Dallery, 2015. "Call Center Delay Announcement Using a Newsvendor-Like Performance Criterion," Production and Operations Management, Production and Operations Management Society, vol. 24(4), pages 587-604, April.
    2. Pengfei Guo & Paul Zipkin, 2007. "Analysis and Comparison of Queues with Different Levels of Delay Information," Management Science, INFORMS, vol. 53(6), pages 962-970, June.
    3. Shlomo Halfin & Ward Whitt, 1981. "Heavy-Traffic Limits for Queues with Many Exponential Servers," Operations Research, INFORMS, vol. 29(3), pages 567-588, June.
    4. Ming Hu & Yang Li & Jianfu Wang, 2018. "Efficient Ignorance: Information Heterogeneity in a Queue," Management Science, INFORMS, vol. 64(6), pages 2650-2671, June.
    5. Roubos, Alex & Jouini, Oualid, 2013. "Call centers with hyperexponential patience modeling," International Journal of Production Economics, Elsevier, vol. 141(1), pages 307-315.
    6. Mor Armony & Constantinos Maglaras, 2004. "Contact Centers with a Call-Back Option and Real-Time Delay Information," Operations Research, INFORMS, vol. 52(4), pages 527-545, August.
    7. Alex Roubos & Oualid Jouini, 2013. "Call centers with hyperexponential patience modeling," Post-Print hal-00779104, HAL.
    8. Ward Whitt, 1999. "Predicting Queueing Delays," Management Science, INFORMS, vol. 45(6), pages 870-888, June.
    9. Ward Whitt, 2004. "Efficiency-Driven Heavy-Traffic Approximations for Many-Server Queues with Abandonments," Management Science, INFORMS, vol. 50(10), pages 1449-1461, October.
    10. Holt, Charles C., 2004. "Author's retrospective on 'Forecasting seasonals and trends by exponentially weighted moving averages'," International Journal of Forecasting, Elsevier, vol. 20(1), pages 11-13.
    11. Holt, Charles C., 2004. "Forecasting seasonals and trends by exponentially weighted moving averages," International Journal of Forecasting, Elsevier, vol. 20(1), pages 5-10.
    12. Lawrence Brown & Noah Gans & Avishai Mandelbaum & Anat Sakov & Haipeng Shen & Sergey Zeltyn & Linda Zhao, 2005. "Statistical Analysis of a Telephone Call Center: A Queueing-Science Perspective," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 36-50, March.
    13. Rouba Ibrahim, 2018. "Sharing delay information in service systems: a literature survey," Queueing Systems: Theory and Applications, Springer, vol. 89(1), pages 49-79, June.
    14. Mor Armony & Nahum Shimkin & Ward Whitt, 2009. "The Impact of Delay Announcements in Many-Server Queues with Abandonment," Operations Research, INFORMS, vol. 57(1), pages 66-81, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rouba Ibrahim & Mor Armony & Achal Bassamboo, 2017. "Does the Past Predict the Future? The Case of Delay Announcements in Service Systems," Management Science, INFORMS, vol. 63(6), pages 1762-1780, June.
    2. Rouba Ibrahim, 2018. "Sharing delay information in service systems: a literature survey," Queueing Systems: Theory and Applications, Springer, vol. 89(1), pages 49-79, June.
    3. Qiuping Yu & Gad Allon & Achal Bassamboo & Seyed Iravani, 2018. "Managing Customer Expectations and Priorities in Service Systems," Management Science, INFORMS, vol. 64(8), pages 3942-3970, August.
    4. Rouba Ibrahim & Ward Whitt, 2009. "Real-Time Delay Estimation in Overloaded Multiserver Queues with Abandonments," Management Science, INFORMS, vol. 55(10), pages 1729-1742, October.
    5. Rouba Ibrahim & Ward Whitt, 2011. "Wait-Time Predictors for Customer Service Systems with Time-Varying Demand and Capacity," Operations Research, INFORMS, vol. 59(5), pages 1106-1118, October.
    6. Oualid Jouini & Zeynep Akşin & Yves Dallery, 2011. "Call Centers with Delay Information: Models and Insights," Manufacturing & Service Operations Management, INFORMS, vol. 13(4), pages 534-548, October.
    7. Najiya Fatma & Varun Ramamohan, 2023. "Patient diversion using real-time delay predictions across healthcare facility networks," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(2), pages 437-476, June.
    8. Avishai Mandelbaum & Petar Momčilović, 2008. "Queues with Many Servers: The Virtual Waiting-Time Process in the QED Regime," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 561-586, August.
    9. Noa Zychlinski, 2023. "Applications of fluid models in service operations management," Queueing Systems: Theory and Applications, Springer, vol. 103(1), pages 161-185, February.
    10. Qiuping Yu & Yiming Zhang & Yong-Pin Zhou, 2022. "Delay Information in Virtual Queues: A Large-Scale Field Experiment on a Major Ride-Sharing Platform," Management Science, INFORMS, vol. 68(8), pages 5745-5757, August.
    11. Qiuping Yu & Gad Allon & Achal Bassamboo, 2021. "The Reference Effect of Delay Announcements: A Field Experiment," Management Science, INFORMS, vol. 67(12), pages 7417-7437, December.
    12. Jouini, Oualid & Dallery, Yves & Aksin, Zeynep, 2009. "Queueing models for full-flexible multi-class call centers with real-time anticipated delays," International Journal of Production Economics, Elsevier, vol. 120(2), pages 389-399, August.
    13. Siddharth Prakash Singh & Mohammad Delasay & Alan Scheller‐Wolf, 2023. "Real‐time delay announcement under competition," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 863-881, March.
    14. Chenguang (Allen) Wu & Achal Bassamboo & Ohad Perry, 2019. "Service System with Dependent Service and Patience Times," Management Science, INFORMS, vol. 65(3), pages 1151-1172, March.
    15. Theresa Maria Rausch & Tobias Albrecht & Daniel Baier, 2022. "Beyond the beaten paths of forecasting call center arrivals: on the use of dynamic harmonic regression with predictor variables," Journal of Business Economics, Springer, vol. 92(4), pages 675-706, May.
    16. Zeynep Akşin & Barış Ata & Seyed Morteza Emadi & Che-Lin Su, 2013. "Structural Estimation of Callers' Delay Sensitivity in Call Centers," Management Science, INFORMS, vol. 59(12), pages 2727-2746, December.
    17. Opher Baron & Joseph Milner, 2009. "Staffing to Maximize Profit for Call Centers with Alternate Service-Level Agreements," Operations Research, INFORMS, vol. 57(3), pages 685-700, June.
    18. Dimitrios Logothetis & Antonis Economou, 2023. "The impact of information on transportation systems with strategic customers," Production and Operations Management, Production and Operations Management Society, vol. 32(7), pages 2189-2206, July.
    19. Nur Sunar & Yichen Tu & Serhan Ziya, 2021. "Pooled vs. Dedicated Queues when Customers Are Delay-Sensitive," Management Science, INFORMS, vol. 67(6), pages 3785-3802, June.
    20. Guo, Pengfei & Sun, Wei & Wang, Yulan, 2011. "Equilibrium and optimal strategies to join a queue with partial information on service times," European Journal of Operational Research, Elsevier, vol. 214(2), pages 284-297, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:67:y:2021:i:7:p:4191-4208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.