Advanced Search
MyIDEAS: Login to save this article or follow this journal

The Dynamic Lot-Size Model with Stochastic Lead Times

Contents:

Author Info

  • Christopher Nevison

    (Colgate University)

  • Michael Burstein

    (University of Massachusetts)

Registered author(s):

    Abstract

    Optimal solutions for the dynamic lot-sizing problem with deterministic demands but stochastic lead times are "lumpy." If lead time distributions are arbitrary except that they are independent of order size and do not allow orders to cross in time, then each order in an optimal solution will exactly satisfy a consecutive sequence of demands, a natural extension of the classic results by Wagner and Whitin. If, on the other hand, orders can cross in time, then optimal solutions are still "lumpy" in the sense that each order will satisfy a set, not necessarily consecutive, of the demands. An example shows how this characterization can be used to find a solution to a problem where interdependence of lead times is critical. This characterization of optimal solutions facilitates dynamic programming approaches to this problem.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://dx.doi.org/10.1287/mnsc.30.1.100
    Download Restriction: no

    Bibliographic Info

    Article provided by INFORMS in its journal Management Science.

    Volume (Year): 30 (1984)
    Issue (Month): 1 (January)
    Pages: 100-109

    as in new window
    Handle: RePEc:inm:ormnsc:v:30:y:1984:i:1:p:100-109

    Contact details of provider:
    Postal: 7240 Parkway Drive, Suite 300, Hanover, MD 21076 USA
    Phone: +1-443-757-3500
    Fax: 443-757-3515
    Email:
    Web page: http://www.informs.org/
    More information through EDIRC

    Related research

    Keywords: inventory/production: stochastic models; dynamic programming: applications;

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Riezebos, Jan, 2006. "Inventory order crossovers," International Journal of Production Economics, Elsevier, vol. 104(2), pages 666-675, December.
    2. Rossi, Roberto & Tarim, S. Armagan & Hnich, Brahim & Prestwich, Steven, 2010. "Computing the non-stationary replenishment cycle inventory policy under stochastic supplier lead-times," International Journal of Production Economics, Elsevier, vol. 127(1), pages 180-189, September.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:30:y:1984:i:1:p:100-109. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.