IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v21y1975i9p1007-1013.html
   My bibliography  Save this article

A Deterministic Multi-Period Production Planning Model with Piecewise Concave Production and Holding-Backorder Costs

Author

Listed:
  • Cary Swoveland

    (University of British Columbia)

Abstract

A single product, finite horizon production planning model with known requirements is considered. Production and holding-backorder cost functions are assumed to be piecewise concave, thereby allowing an arbitrarily close approximation to a wide range of cost functions which one might encounter in practice. In each period production, inventories and backlogged orders may not exceed prescribed levels. Production (inventory) breakpoints are the endpoints of the intervals over which the production (holding-backorder) cost functions are concave. It is shown that there is an optimal production schedule which has the property that between successive periods in which ending inventories are at inventory breakpoint levels there is at most one period in which production is not at a production breakpoint level. This property, which is an extension of recent results obtained by Florian and Klein [Florian, Michael, Morton Klein. 1971. Deterministic production planning with concave costs and capacity constraints. Management Sci. 18 (1, September) 12-20.] and Love [Love, Steven F. 1973. Bounded production and inventory models with piecewise concave costs. Management Sci. 20 (3, November) 313-318.], suggests a straight-forward dynamic programming algorithm for obtaining an optimal solution.

Suggested Citation

  • Cary Swoveland, 1975. "A Deterministic Multi-Period Production Planning Model with Piecewise Concave Production and Holding-Backorder Costs," Management Science, INFORMS, vol. 21(9), pages 1007-1013, May.
  • Handle: RePEc:inm:ormnsc:v:21:y:1975:i:9:p:1007-1013
    DOI: 10.1287/mnsc.21.9.1007
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.21.9.1007
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.21.9.1007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schouten, Jop, 2022. "Cooperation, allocation and strategy in interactive decision-making," Other publications TiSEM d5d41448-8033-4f6b-8ec0-c, Tilburg University, School of Economics and Management.
    2. Chung-Yee Lee & Sila Çetinkaya & Albert P.M. Wagelmans, 1999. "A Dynamic Lot-Sizing Model with Demand Time Windows," Tinbergen Institute Discussion Papers 99-095/4, Tinbergen Institute.
    3. Ou, Jinwen, 2017. "Improved exact algorithms to economic lot-sizing with piecewise linear production costs," European Journal of Operational Research, Elsevier, vol. 256(3), pages 777-784.
    4. Akbalik, Ayse & Penz, Bernard, 2009. "Exact methods for single-item capacitated lot sizing problem with alternative machines and piece-wise linear production costs," International Journal of Production Economics, Elsevier, vol. 119(2), pages 367-379, June.
    5. Brahimi, Nadjib & Absi, Nabil & Dauzère-Pérès, Stéphane & Nordli, Atle, 2017. "Single-item dynamic lot-sizing problems: An updated survey," European Journal of Operational Research, Elsevier, vol. 263(3), pages 838-863.
    6. Hwang, Hark-Chin & Jaruphongsa, Wikrom, 2008. "Dynamic lot-sizing model for major and minor demands," European Journal of Operational Research, Elsevier, vol. 184(2), pages 711-724, January.
    7. C. P. M. van Hoesel & A. P. M. Wagelmans, 2001. "Fully Polynomial Approximation Schemes for Single-Item Capacitated Economic Lot-Sizing Problems," Mathematics of Operations Research, INFORMS, vol. 26(2), pages 339-357, May.
    8. Chung-Lun Li & Qingying Li, 2016. "Polynomial-Time Solvability of Dynamic Lot Size Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(03), pages 1-20, June.
    9. Chung-Lun Li & Vernon Ning Hsu & Wen-Qiang Xiao, 2004. "Dynamic Lot Sizing with Batch Ordering and Truckload Discounts," Operations Research, INFORMS, vol. 52(4), pages 639-654, August.
    10. Lee, C.Y. & Cetinkaya, S. & Wagelmans, A.P.M., 1999. "A dynamic lot-sizing model with demand time windows," Econometric Institute Research Papers EI 9948-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    11. Hong, Zhaofu & Chu, Chengbin & Yu, Yugang, 2016. "Dual-mode production planning for manufacturing with emission constraints," European Journal of Operational Research, Elsevier, vol. 251(1), pages 96-106.
    12. Hoesel C.P.M. van & Wagelmans A.P.M., 1997. "Fully polynomial approximation schemes for single-item capacitated economic lot-sizing problems," Research Memorandum 014, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    13. Akbalik, A. & Pochet, Y., 2009. "Valid inequalities for the single-item capacitated lot sizing problem with step-wise costs," European Journal of Operational Research, Elsevier, vol. 198(2), pages 412-434, October.
    14. Hark-Chin Hwang, 2009. "Inventory Replenishment and Inbound Shipment Scheduling Under a Minimum Replenishment Policy," Transportation Science, INFORMS, vol. 43(2), pages 244-264, May.
    15. Schouten, Jop & Groote Schaarsberg, Mirjam & Borm, Peter, 2020. "Cost Sharing Methods for Capacity Restricted Cooperative Purchasing Situations," Other publications TiSEM aa7f747d-c97b-4655-b6cb-9, Tilburg University, School of Economics and Management.
    16. Jans, R.F. & Degraeve, Z., 2005. "Modeling Industrial Lot Sizing Problems: A Review," ERIM Report Series Research in Management ERS-2005-049-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    17. Chung-Yee Lee & Sila Çetinkaya & Albert P. M. Wagelmans, 2001. "A Dynamic Lot-Sizing Model with Demand Time Windows," Management Science, INFORMS, vol. 47(10), pages 1384-1395, October.
    18. van Hoesel, C.P.M. & Wagelmans, A.P.M., 1997. "Fully Polynomial Approximation Schemes for Single-Item Capacitated Economic Lot-Sizing Problems," Econometric Institute Research Papers EI 9735/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    19. van Hoesel, C.P.M. & Wagelmans, A., 1997. "Fully polynomial approximation schemes for single-item capacitated economic lot-sizing problems," Research Memorandum 029, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    20. Liu, X. & Tu, Yl., 2008. "Production planning with limited inventory capacity and allowed stockout," International Journal of Production Economics, Elsevier, vol. 111(1), pages 180-191, January.
    21. Groote Schaarsberg, M., 2014. "Interactive operational decision making : Purchasing situations & mutual liability problems," Other publications TiSEM d3446205-1799-43a4-85f6-5, Tilburg University, School of Economics and Management.
    22. Esra Koca & Hande Yaman & M. Selim Aktürk, 2014. "Lot Sizing with Piecewise Concave Production Costs," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 767-779, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:21:y:1975:i:9:p:1007-1013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.