IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v43y2013i4p313-324.html
   My bibliography  Save this article

Medcenter Container Terminal SpA Uses Simulation in Housekeeping Operations

Author

Listed:
  • Pasquale Legato

    (Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica, Università della Calabria, 87036 Rende, Cosenza, Italy)

  • Rina Mary Mazza

    (Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica, Università della Calabria, 87036 Rende, Cosenza, Italy)

  • Roberto Trunfio

    (Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica, Università della Calabria, 87036 Rende, Cosenza, Italy)

Abstract

Within a maritime container terminal, we refer to the operations required to reposition containers in the storage yard as housekeeping. The objective of housekeeping operations, which are typically performed a few hours prior to boarding time, is to accelerate container loading on outgoing vessels. In this paper, we describe our experiences in modeling and simulating the housekeeping process and integrating the related simulation tool into the existing container management system at Medcenter Container Terminal SpA (MCT), the company that runs the container terminal at the port of Gioia Tauro, Italy. MCT planners use this operations research tool to perform quantitative analysis of different scenarios to evaluate alternative policies and rules for housekeeping; hence, they can provide more rapid container loading for shipping companies.

Suggested Citation

  • Pasquale Legato & Rina Mary Mazza & Roberto Trunfio, 2013. "Medcenter Container Terminal SpA Uses Simulation in Housekeeping Operations," Interfaces, INFORMS, vol. 43(4), pages 313-324, August.
  • Handle: RePEc:inm:orinte:v:43:y:2013:i:4:p:313-324
    DOI: 10.1287/inte.2013.0681
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.2013.0681
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.2013.0681?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Legato, Pasquale & Mazza, Rina M., 2001. "Berth planning and resources optimisation at a container terminal via discrete event simulation," European Journal of Operational Research, Elsevier, vol. 133(3), pages 537-547, September.
    2. Petering, Matthew E.H., 2009. "Effect of block width and storage yard layout on marine container terminal performance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(4), pages 591-610, July.
    3. Pasquale Legato & Pietro Canonaco & Rina M Mazza, 2009. "Yard Crane Management by Simulation and Optimisation," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 11(1), pages 36-57, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Ding & Shuai Jia & Tianyi Gu & Chung-Lun Li, 2016. "SGICT Builds an Optimization-Based System for Daily Berth Planning," Interfaces, INFORMS, vol. 46(4), pages 281-296, August.
    2. Kevin Tierney & Dario Pacino & Stefan Voß, 2017. "Solving the pre-marshalling problem to optimality with A* and IDA," Flexible Services and Manufacturing Journal, Springer, vol. 29(2), pages 223-259, June.
    3. Cimpeanu, Radu & Devine, Mel T. & O’Brien, Conor, 2017. "A simulation model for the management and expansion of extended port terminal operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 98(C), pages 105-131.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Branislav Dragović & Ernestos Tzannatos & Nam Kuy Park, 2017. "Simulation modelling in ports and container terminals: literature overview and analysis by research field, application area and tool," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 4-34, March.
    2. Ursavas, Evrim & Zhu, Stuart X., 2016. "Optimal policies for the berth allocation problem under stochastic nature," European Journal of Operational Research, Elsevier, vol. 255(2), pages 380-387.
    3. Nanxi Wang & Daofang Chang & Xiaowei Shi & Jun Yuan & Yinping Gao, 2019. "Analysis and Design of Typical Automated Container Terminals Layout Considering Carbon Emissions," Sustainability, MDPI, vol. 11(10), pages 1-40, May.
    4. Zhen, Lu & Lee, Loo Hay & Chew, Ek Peng, 2011. "A decision model for berth allocation under uncertainty," European Journal of Operational Research, Elsevier, vol. 212(1), pages 54-68, July.
    5. Matthew E. H. Petering & Yong Wu & Wenkai Li & Mark Goh & Robert Souza & Katta G. Murty, 2017. "Real-time container storage location assignment at a seaport container transshipment terminal: dispersion levels, yard templates, and sensitivity analyses," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 369-402, December.
    6. Martin Alcalde, Enrique & Kim, Kap Hwan & Marchán, Sergi Saurí, 2015. "Optimal space for storage yard considering yard inventory forecasts and terminal performance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 101-128.
    7. Kumawat, Govind Lal & Roy, Debjit & De Koster, René & Adan, Ivo, 2021. "Stochastic modeling of parallel process flows in intra-logistics systems: Applications in container terminals and compact storage systems," European Journal of Operational Research, Elsevier, vol. 290(1), pages 159-176.
    8. Claudia Durán & Ivan Derpich & Raúl Carrasco, 2022. "Optimization of Port Layout to Determine Greenhouse Gas Emission Gaps," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    9. Akash Gupta & Debjit Roy & René de Koster & Sampanna Parhi, 2017. "Optimal stack layout in a sea container terminal with automated lifting vehicles," International Journal of Production Research, Taylor & Francis Journals, vol. 55(13), pages 3747-3765, July.
    10. Zhang, Rong & Jian, Wenliang & Tavasszy, Lóránt, 2018. "Estimation of network level benefits of reliability improvements in intermodal freight transport," Research in Transportation Economics, Elsevier, vol. 70(C), pages 1-8.
    11. Jia, Shuai & Li, Chung-Lun & Xu, Zhou, 2020. "A simulation optimization method for deep-sea vessel berth planning and feeder arrival scheduling at a container port," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 174-196.
    12. Marco Ferretti & Ugo Fiore & Francesca Perla & Marcello Risitano & Salvatore Scognamiglio, 2022. "Deep Learning Forecasting for Supporting Terminal Operators in Port Business Development," Future Internet, MDPI, vol. 14(8), pages 1-19, July.
    13. Jin, Jiahuan & Ma, Mingyu & Jin, Huan & Cui, Tianxiang & Bai, Ruibin, 2023. "Container terminal daily gate in and gate out forecasting using machine learning methods," Transport Policy, Elsevier, vol. 132(C), pages 163-174.
    14. Amir Gharehgozli & Nima Zaerpour & Rene Koster, 2020. "Container terminal layout design: transition and future," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(4), pages 610-639, December.
    15. Jiyin Liu & Yat‐wah Wan & Lei Wang, 2006. "Quay crane scheduling at container terminals to minimize the maximum relative tardiness of vessel departures," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(1), pages 60-74, February.
    16. Zhang, Liye & Meng, Qiang & Fang Fwa, Tien, 2019. "Big AIS data based spatial-temporal analyses of ship traffic in Singapore port waters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 287-304.
    17. Kai Wang & Lu Zhen & Shuaian Wang, 2018. "Column Generation for the Integrated Berth Allocation, Quay Crane Assignment, and Yard Assignment Problem," Transportation Science, INFORMS, vol. 52(4), pages 812-834, August.
    18. Parola, Francesco & Sciomachen, Anna, 2005. "Intermodal container flows in a port system network:: Analysis of possible growths via simulation models," International Journal of Production Economics, Elsevier, vol. 97(1), pages 75-88, July.
    19. Erhan Karakaya & Alice E. Smith & Rosa G. González Ramírez & Jimena Pascual, 2023. "Design of empty container depot layouts using data and analytics," Flexible Services and Manufacturing Journal, Springer, vol. 35(1), pages 196-240, March.
    20. Liu, Changchun, 2020. "Iterative heuristic for simultaneous allocations of berths, quay cranes, and yards under practical situations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:43:y:2013:i:4:p:313-324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.