IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v31y2001i1p57-76.html
   My bibliography  Save this article

Enhancements to the FAA Ground-Delay Program Under Collaborative Decision Making

Author

Listed:
  • Kan Chang

    (Metron, Inc., 11911 Freedom Drive, Suite 800 Reston, Virginia 20190)

  • Ken Howard

    (DTS-920, Volpe National Transportation Systems Center, 55 Broadway, Cambridge, Massachusetts 02142-1093)

  • Rick Oiesen

    (DTS-56 Volpe National Transportation Systems Center)

  • Lara Shisler

    (Metron, Inc.)

  • Midori Tanino

    (Metron, Inc.)

  • Michael C. Wambsganss

    (Metron, Inc.)

Abstract

When airport arrival capacity is reduced, it may not meet the demand placed by arriving aircraft. In these cases, the FAA enacts a ground-delay program (GDP) to delay flights before they depart from their origin airports, keeping traffic at an acceptable level for the affected arrival airport. However, air-traffic managers sometimes lacked current data and a common situational awareness when running a GDP. Working with the FAA and the airline community, Metron, Inc. and Volpe National Transportation Systems Center improved the process by using real-time data exchange between all users, new algorithms to assign flight-arrival slots, and new software at FAA facilities and airlines. This paper reflects the views and opinions of the authors and does not necessarily reflect that of the FAA.

Suggested Citation

  • Kan Chang & Ken Howard & Rick Oiesen & Lara Shisler & Midori Tanino & Michael C. Wambsganss, 2001. "Enhancements to the FAA Ground-Delay Program Under Collaborative Decision Making," Interfaces, INFORMS, vol. 31(1), pages 57-76, February.
  • Handle: RePEc:inm:orinte:v:31:y:2001:i:1:p:57-76
    DOI: 10.1287/inte.31.1.57.9689
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.31.1.57.9689
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.31.1.57.9689?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James Schummer & Rakesh V. Vohra, 2013. "Assignment of Arrival Slots," American Economic Journal: Microeconomics, American Economic Association, vol. 5(2), pages 164-185, May.
    2. Okwir, Simon & Ulfvengren, Pernilla & Angelis, Jannis & Ruiz, Felipe & Núñez Guerrero, Yilsy Maria, 2017. "Managing turnaround performance through Collaborative Decision Making," Journal of Air Transport Management, Elsevier, vol. 58(C), pages 183-196.
    3. Avijit Mukherjee & Mark Hansen, 2007. "A Dynamic Stochastic Model for the Single Airport Ground Holding Problem," Transportation Science, INFORMS, vol. 41(4), pages 444-456, November.
    4. Xu, Yan & Dalmau, Ramon & Melgosa, Marc & Montlaur, Adeline & Prats, Xavier, 2020. "A framework for collaborative air traffic flow management minimizing costs for airspace users: Enabling trajectory options and flexible pre-tactical delay management," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 229-255.
    5. Hanif D. Sherali & Raymond W. Staats & Antonio A. Trani, 2006. "An Airspace-Planning and Collaborative Decision-Making Model: Part II---Cost Model, Data Considerations, and Computations," Transportation Science, INFORMS, vol. 40(2), pages 147-164, May.
    6. Thomas W. M. Vossen & Michael O. Ball, 2006. "Slot Trading Opportunities in Collaborative Ground Delay Programs," Transportation Science, INFORMS, vol. 40(1), pages 29-43, February.
    7. Cynthia Barnhart & Dimitris Bertsimas & Constantine Caramanis & Douglas Fearing, 2012. "Equitable and Efficient Coordination in Traffic Flow Management," Transportation Science, INFORMS, vol. 46(2), pages 262-280, May.
    8. Donghai Wang & Qiuhong Zhao, 2020. "A Simultaneous Optimization Model for Airport Network Slot Allocation under Uncertain Capacity," Sustainability, MDPI, vol. 12(14), pages 1-14, July.
    9. Bard, Jonathan F. & Mohan, Dinesh Natarajan, 2008. "Reallocating arrival slots during a ground delay program," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 113-134, February.
    10. Cynthia Barnhart & Peter Belobaba & Amedeo R. Odoni, 2003. "Applications of Operations Research in the Air Transport Industry," Transportation Science, INFORMS, vol. 37(4), pages 368-391, November.
    11. Balázs Kotnyek & Octavio Richetta, 2006. "Equitable Models for the Stochastic Ground-Holding Problem Under Collaborative Decision Making," Transportation Science, INFORMS, vol. 40(2), pages 133-146, May.
    12. Li, Wenjie & Asadabadi, Ali & Miller-Hooks, Elise, 2022. "Enhancing resilience through port coalitions in maritime freight networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 1-23.
    13. Guglielmo Lulli & Amedeo Odoni, 2007. "The European Air Traffic Flow Management Problem," Transportation Science, INFORMS, vol. 41(4), pages 431-443, November.
    14. Hanif D. Sherali & Justin M. Hill & Michael V. McCrea & Antonio A. Trani, 2011. "Integrating Slot Exchange, Safety, Capacity, and Equity Mechanisms Within an Airspace Flow Program," Transportation Science, INFORMS, vol. 45(2), pages 271-284, May.
    15. Lorenzo Castelli & Raffaele Pesenti & Andrea Ranieri, 2009. "Allocating Air Traffic Flow Management Slots," Working Papers 191, Department of Applied Mathematics, Università Ca' Foscari Venezia.
    16. Hanif D. Sherali & Raymond W. Staats & Antonio A. Trani, 2003. "An Airspace Planning and Collaborative Decision-Making Model: Part I—Probabilistic Conflicts, Workload, and Equity Considerations," Transportation Science, INFORMS, vol. 37(4), pages 434-456, November.
    17. Jay M. Rosenberger & Ellis L. Johnson & George L. Nemhauser, 2003. "Rerouting Aircraft for Airline Recovery," Transportation Science, INFORMS, vol. 37(4), pages 408-421, November.
    18. Liu, Yulin & Liu, Yi & Hansen, Mark & Pozdnukhov, Alexey & Zhang, Danqing, 2019. "Using machine learning to analyze air traffic management actions: Ground delay program case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 80-95.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:31:y:2001:i:1:p:57-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.