IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v34y2022i6p3134-3150.html
   My bibliography  Save this article

A Branch-and-Price Algorithm for the Multiple Knapsack Problem

Author

Listed:
  • Olivier Lalonde

    (Centre Interuniversitaire de Recherche sur les Réseaux d’Entreprise, la Logistique et le Transport (CIRRELT), Université de Montréal, Montreal, Quebec H3T 1J4, Canada)

  • Jean-François Côté

    (Département d’Informatique et de Recherche Opérationnelle, Université de Montréal, Montreal, Quebec H3T 1J4, Canada)

  • Bernard Gendron

    (Université Laval, Quebec, Quebec G1V 0A6, Canada)

Abstract

The multiple knapsack problem is a well-studied combinatorial optimization problem with several practical and theoretical applications. It consists of packing some subset of n items into m knapsacks such that the total profit of the chosen items is maximum. A new formulation of the problem is presented, where a Lagrangian relaxation is derived, and we prove that it dominates the commonly used relaxations for this problem. We also present a Dantzig-Wolfe decomposition of the new formulation that we solve to optimality using a branch-and-price algorithm, where its main advantage comes from the fact that it is possible to control whether an item is included in some knapsack or not. An improved algorithm for solving the resulting packing subproblems is also introduced. Computational experiments then show that the new approach achieves state-of-the-art results.

Suggested Citation

  • Olivier Lalonde & Jean-François Côté & Bernard Gendron, 2022. "A Branch-and-Price Algorithm for the Multiple Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3134-3150, November.
  • Handle: RePEc:inm:orijoc:v:34:y:2022:i:6:p:3134-3150
    DOI: 10.1287/ijoc.2022.1223
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2022.1223
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2022.1223?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jean-François Côté & Manuel Iori, 2018. "The Meet-in-the-Middle Principle for Cutting and Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 646-661, November.
    2. Ming S. Hung & John C. Fisk, 1978. "An algorithm for 0‐1 multiple‐knapsack problems," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 25(3), pages 571-579, September.
    3. Alex Fukunaga, 2011. "A branch-and-bound algorithm for hard multiple knapsack problems," Annals of Operations Research, Springer, vol. 184(1), pages 97-119, April.
    4. Dell’Amico, Mauro & Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2019. "Mathematical models and decomposition methods for the multiple knapsack problem," European Journal of Operational Research, Elsevier, vol. 274(3), pages 886-899.
    5. Belov, G. & Scheithauer, G., 2002. "A cutting plane algorithm for the one-dimensional cutting stock problem with multiple stock lengths," European Journal of Operational Research, Elsevier, vol. 141(2), pages 274-294, September.
    6. Pisinger, David, 1999. "An exact algorithm for large multiple knapsack problems," European Journal of Operational Research, Elsevier, vol. 114(3), pages 528-541, May.
    7. Martello, Silvano & Toth, Paolo, 1980. "Solution of the zero-one multiple knapsack problem," European Journal of Operational Research, Elsevier, vol. 4(4), pages 276-283, April.
    8. Giorgio Ingargiola & James F. Korsh, 1975. "An Algorithm for the Solution of 0-1 Loading Problems," Operations Research, INFORMS, vol. 23(6), pages 1110-1119, December.
    9. John C. Fisk & Ming S. Hung, 1979. "A heuristic routine for solving large loading problems," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 26(4), pages 643-650, December.
    10. Silvano Martello & David Pisinger & Paolo Toth, 1999. "Dynamic Programming and Strong Bounds for the 0-1 Knapsack Problem," Management Science, INFORMS, vol. 45(3), pages 414-424, March.
    11. Maxence Delorme & Manuel Iori, 2020. "Enhanced Pseudo-polynomial Formulations for Bin Packing and Cutting Stock Problems," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 101-119, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dell’Amico, Mauro & Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2019. "Mathematical models and decomposition methods for the multiple knapsack problem," European Journal of Operational Research, Elsevier, vol. 274(3), pages 886-899.
    2. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    3. Maxence Delorme & Manuel Iori, 2020. "Enhanced Pseudo-polynomial Formulations for Bin Packing and Cutting Stock Problems," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 101-119, January.
    4. Mathijs Barkel & Maxence Delorme, 2023. "Arcflow Formulations and Constraint Generation Frameworks for the Two Bar Charts Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 475-494, March.
    5. Jean-François Côté & Mohamed Haouari & Manuel Iori, 2021. "Combinatorial Benders Decomposition for the Two-Dimensional Bin Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 963-978, July.
    6. Tomohiko Mizutani & Makoto Yamashita, 2013. "Correlative sparsity structures and semidefinite relaxations for concave cost transportation problems with change of variables," Journal of Global Optimization, Springer, vol. 56(3), pages 1073-1100, July.
    7. Katrin Heßler & Stefan Irnich & Tobias Kreiter & Ulrich Pferschy, 2020. "Lexicographic Bin-Packing Optimization for Loading Trucks in a Direct-Shipping System," Working Papers 2009, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    8. Mhand Hifi & Hedi Mhalla & Slim Sadfi, 2005. "Sensitivity of the Optimum to Perturbations of the Profit or Weight of an Item in the Binary Knapsack Problem," Journal of Combinatorial Optimization, Springer, vol. 10(3), pages 239-260, November.
    9. Hadj Salem, Khadija & Silva, Elsa & Oliveira, José Fernando & Carravilla, Maria Antónia, 2023. "Mathematical models for the two-dimensional variable-sized cutting stock problem in the home textile industry," European Journal of Operational Research, Elsevier, vol. 306(2), pages 549-566.
    10. Mancini, Simona & Ciavotta, Michele & Meloni, Carlo, 2021. "The Multiple Multidimensional Knapsack with Family-Split Penalties," European Journal of Operational Research, Elsevier, vol. 289(3), pages 987-998.
    11. Martinovic, J. & Strasdat, N. & Valério de Carvalho, J. & Furini, F., 2023. "A combinatorial flow-based formulation for temporal bin packing problems," European Journal of Operational Research, Elsevier, vol. 307(2), pages 554-574.
    12. Martello, Silvano & Monaci, Michele, 2020. "Algorithmic approaches to the multiple knapsack assignment problem," Omega, Elsevier, vol. 90(C).
    13. Delorme, Maxence & Iori, Manuel & Mendes, Nilson F.M., 2021. "Solution methods for scheduling problems with sequence-dependent deterioration and maintenance events," European Journal of Operational Research, Elsevier, vol. 295(3), pages 823-837.
    14. M Hifi & M Michrafy & A Sbihi, 2004. "Heuristic algorithms for the multiple-choice multidimensional knapsack problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1323-1332, December.
    15. Alex Fukunaga, 2011. "A branch-and-bound algorithm for hard multiple knapsack problems," Annals of Operations Research, Springer, vol. 184(1), pages 97-119, April.
    16. David Bergman, 2019. "An Exact Algorithm for the Quadratic Multiknapsack Problem with an Application to Event Seating," INFORMS Journal on Computing, INFORMS, vol. 31(3), pages 477-492, July.
    17. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    18. Katrin Heßler & Stefan Irnich & Tobias Kreiter & Ulrich Pferschy, 2022. "Bin packing with lexicographic objectives for loading weight- and volume-constrained trucks in a direct-shipping system," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 1-43, June.
    19. M Büther, 2010. "Reducing the elastic generalized assignment problem to the standard generalized assignment problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(11), pages 1582-1595, November.
    20. Erjavec, J. & Gradisar, M. & Trkman, P., 2012. "Assessment of stock size to minimize cutting stock production costs," International Journal of Production Economics, Elsevier, vol. 135(1), pages 170-176.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:34:y:2022:i:6:p:3134-3150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.