IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/7620382.html
   My bibliography  Save this article

Prediction of the Remaining Useful Life of Supercapacitors

Author

Listed:
  • Zhenxiao Yi
  • Kun Zhao
  • Jianrui Sun
  • Licheng Wang
  • Kai Wang
  • Yongzhi Ma
  • Ali Ahmadian

Abstract

As a new type of energy-storage device, supercapacitors are widely used in various energy storage fields because of their advantages such as fast charging and discharging, high power density, wide operating temperature range, and long cycle life. However, the degradation and failure of supercapacitors in large-scale applications will adversely affect the operation of the whole system. To maximize the efficiency of supercapacitors without damaging the equipment and to ensure timely replacement before reaching the end of their useful life, it is critical to accurately predict the remaining useful life of supercapacitors. This paper presents a comprehensive review of model-based and data-driven approaches to predict the remaining useful life of supercapacitors, introduces the characteristics of the various methods, and foresees future trends, with the expectation of providing a reference for further research in this field.

Suggested Citation

  • Zhenxiao Yi & Kun Zhao & Jianrui Sun & Licheng Wang & Kai Wang & Yongzhi Ma & Ali Ahmadian, 2022. "Prediction of the Remaining Useful Life of Supercapacitors," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-8, May.
  • Handle: RePEc:hin:jnlmpe:7620382
    DOI: 10.1155/2022/7620382
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/mpe/2022/7620382.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/mpe/2022/7620382.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2022/7620382?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Zhenhua & Kang, Le & Li, Liwei & Wang, Licheng & Wang, Kai, 2022. "A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF," Energy, Elsevier, vol. 259(C).
    2. Shengyang Lu & Yu Zhu & Lihu Dong & Guangyu Na & Yan Hao & Guanfeng Zhang & Wuyang Zhang & Shanshan Cheng & Junyou Yang & Yuqiu Sui, 2022. "Small-Signal Stability Research of Grid-Connected Virtual Synchronous Generators," Energies, MDPI, vol. 15(19), pages 1-17, September.
    3. Ning Ma & Huaixian Yin & Kai Wang, 2023. "Prediction of the Remaining Useful Life of Supercapacitors at Different Temperatures Based on Improved Long Short-Term Memory," Energies, MDPI, vol. 16(14), pages 1-14, July.
    4. Xinwei Sun & Yang Zhang & Yongcheng Zhang & Licheng Wang & Kai Wang, 2023. "Summary of Health-State Estimation of Lithium-Ion Batteries Based on Electrochemical Impedance Spectroscopy," Energies, MDPI, vol. 16(15), pages 1-19, July.
    5. Dezhi Li & Dongfang Yang & Liwei Li & Licheng Wang & Kai Wang, 2022. "Electrochemical Impedance Spectroscopy Based on the State of Health Estimation for Lithium-Ion Batteries," Energies, MDPI, vol. 15(18), pages 1-26, September.
    6. Cui, Zhenhua & Kang, Le & Li, Liwei & Wang, Licheng & Wang, Kai, 2022. "A hybrid neural network model with improved input for state of charge estimation of lithium-ion battery at low temperatures," Renewable Energy, Elsevier, vol. 198(C), pages 1328-1340.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:7620382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.