IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i7p1215-d104536.html
   My bibliography  Save this article

Fractal Feature Analysis and Information Extraction of Woodlands Based on MODIS NDVI Time Series

Author

Listed:
  • Shiwei Dong

    (College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
    Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
    National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China)

  • Hong Li

    (Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China)

  • Danfeng Sun

    (College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China)

Abstract

The quick and accurate extraction of information on woodland resources and distributions using remote sensing technology is a key step in the management, protection, and sustainable use of woodlands. This paper presents a low-cost and high-precision extraction method for large woodland areas based on the fractal features of the Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) time series data for Beijing, China. The blanket method was used for computing the upper and lower fractal signals of each pixel in the NDVI time series images. The fractal signals of woodlands and other land use/land cover types at corresponding scales were analyzed and compared, and the attributes of woodlands were enhanced at the fifth lower fractal signal. The spatial distributions of woodlands were extracted using the Iterative Self-Organizing Data Analysis technique (ISODATA), and an accuracy assessment of the extracted results was conducted using the China Land Use and Land Cover Data Set (CLUCDS) from the same period. The results showed that the overall accuracy, kappa coefficient, and error coefficient were 90.54%, 0.74, and 8.17%, respectively. Compared with the extracted results for woodlands using the MODIS NDVI time series only, the average error coefficient decreased from 30.2 to 7.38% because of these fractal features. The method developed in this study can rapidly and effectively extract information on woodlands from low spatial resolution remote sensing data and provide a robust operational tool for use in further research.

Suggested Citation

  • Shiwei Dong & Hong Li & Danfeng Sun, 2017. "Fractal Feature Analysis and Information Extraction of Woodlands Based on MODIS NDVI Time Series," Sustainability, MDPI, vol. 9(7), pages 1-17, July.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:7:p:1215-:d:104536
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/7/1215/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/7/1215/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    2. Shannon M. Sterling & Agnès Ducharne & Jan Polcher, 2013. "The impact of global land-cover change on the terrestrial water cycle," Nature Climate Change, Nature, vol. 3(4), pages 385-390, April.
    3. Chen Jun & Yifang Ban & Songnian Li, 2014. "Open access to Earth land-cover map," Nature, Nature, vol. 514(7523), pages 434-434, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi Wang & Peng Guo & Shiwei Dong & Yu Liu & Yuchun Pan & Cunjun Li, 2023. "Extraction of Cropland Spatial Distribution Information Using Multi-Seasonal Fractal Features: A Case Study of Black Soil in Lishu County, China," Agriculture, MDPI, vol. 13(2), pages 1-19, February.
    2. Vaclav Beran & Marek Teichmann & Frantisek Kuda & Renata Zdarilova, 2020. "Dynamics of Regional Development in Regional and Municipal Economy," Sustainability, MDPI, vol. 12(21), pages 1-18, November.
    3. Shiwei Dong & Yuchun Pan & Hui Guo & Bingbo Gao & Mengmeng Li, 2021. "Identifying Influencing Factors of Agricultural Soil Heavy Metals Using a Geographical Detector: A Case Study in Shunyi District, China," Land, MDPI, vol. 10(10), pages 1-15, September.
    4. Inés Gazzano & Marcel Achkar & Ismael Díaz, 2019. "Agricultural Transformations in the Southern Cone of Latin America: Agricultural Intensification and Decrease of the Aboveground Net Primary Production, Uruguay’s Case," Sustainability, MDPI, vol. 11(24), pages 1-16, December.
    5. Le’an Qu & Zhenjie Chen & Manchun Li, 2019. "CART-RF Classification with Multifilter for Monitoring Land Use Changes Based on MODIS Time-Series Data: A Case Study from Jiangsu Province, China," Sustainability, MDPI, vol. 11(20), pages 1-23, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Carlos Chávez & Felipe J. Fonseca & Manuel Gómez-Zaldívar, 2017. "Resoluciones de disputas comerciales y desempeño económico regional en México. (Commercial Disputes Resolution and Regional Economic Performance in Mexico)," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(1), pages 79-93, May.
    2. Chen, Ray-Bing & Chen, Ying & Härdle, Wolfgang K., 2014. "TVICA—Time varying independent component analysis and its application to financial data," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 95-109.
    3. Yan Yu Chen & Chun-Cheih Chao & Fu-Chen Liu & Po-Chen Hsu & Hsueh-Fen Chen & Shih-Chi Peng & Yung-Jen Chuang & Chung-Yu Lan & Wen-Ping Hsieh & David Shan Hill Wong, 2013. "Dynamic Transcript Profiling of Candida albicans Infection in Zebrafish: A Pathogen-Host Interaction Study," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-16, September.
    4. Plat, Richard, 2009. "Stochastic portfolio specific mortality and the quantification of mortality basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 123-132, August.
    5. Kondylis, Athanassios & Whittaker, Joe, 2008. "Spectral preconditioning of Krylov spaces: Combining PLS and PC regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2588-2603, January.
    6. Simplice A. Asongu & Nicholas M. Odhiambo, 2019. "Governance, capital flight and industrialisation in Africa," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 8(1), pages 1-22, December.
    7. Qianning Zhang & Zhu Xu, 2021. "Fully Portraying Patch Area Scaling with Resolution: An Analytics and Descriptive Statistics-Combined Approach," Land, MDPI, vol. 10(3), pages 1-21, March.
    8. M. J. Aziakpono & S. Kleimeier & H. Sander, 2012. "Banking market integration in the SADC countries: evidence from interest rate analyses," Applied Economics, Taylor & Francis Journals, vol. 44(29), pages 3857-3876, October.
    9. Bianca Maria Colosimo & Luca Pagani & Marco Grasso, 2024. "Modeling spatial point processes in video-imaging via Ripley’s K-function: an application to spatter analysis in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 429-447, January.
    10. Ouyang, Yaofu & Li, Peng, 2018. "On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach," Energy Economics, Elsevier, vol. 71(C), pages 238-252.
    11. Fan, Cheng & Sun, Yongjun & Zhao, Yang & Song, Mengjie & Wang, Jiayuan, 2019. "Deep learning-based feature engineering methods for improved building energy prediction," Applied Energy, Elsevier, vol. 240(C), pages 35-45.
    12. Ionela Munteanu & Adriana Grigorescu & Elena Condrea & Elena Pelinescu, 2020. "Convergent Insights for Sustainable Development and Ethical Cohesion: An Empirical Study on Corporate Governance in Romanian Public Entities," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    13. Daniel Boss & Annick Hoffmann & Benjamin Rappaz & Christian Depeursinge & Pierre J Magistretti & Dimitri Van de Ville & Pierre Marquet, 2012. "Spatially-Resolved Eigenmode Decomposition of Red Blood Cells Membrane Fluctuations Questions the Role of ATP in Flickering," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-10, August.
    14. Doukas, Haris & Papadopoulou, Alexandra & Savvakis, Nikolaos & Tsoutsos, Theocharis & Psarras, John, 2012. "Assessing energy sustainability of rural communities using Principal Component Analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1949-1957.
    15. Paschalis Arvanitidis & Athina Economou & Christos Kollias, 2016. "Terrorism’s effects on social capital in European countries," Public Choice, Springer, vol. 169(3), pages 231-250, December.
    16. Teerachai Amnuaylojaroen & Pavinee Chanvichit, 2024. "Historical Analysis of the Effects of Drought on Rice and Maize Yields in Southeast Asia," Resources, MDPI, vol. 13(3), pages 1-18, March.
    17. -, 2015. "The effects of climate change on the coasts of Latin America and the Caribbean: Climate variability, dynamics and trends," Documentos de Proyectos 39866, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    18. Dorota Toczydlowska & Gareth W. Peters & Man Chung Fung & Pavel V. Shevchenko, 2017. "Stochastic Period and Cohort Effect State-Space Mortality Models Incorporating Demographic Factors via Probabilistic Robust Principal Components," Risks, MDPI, vol. 5(3), pages 1-77, July.
    19. Weili Duan & Bin He & Daniel Nover & Guishan Yang & Wen Chen & Huifang Meng & Shan Zou & Chuanming Liu, 2016. "Water Quality Assessment and Pollution Source Identification of the Eastern Poyang Lake Basin Using Multivariate Statistical Methods," Sustainability, MDPI, vol. 8(2), pages 1-15, January.
    20. Joanna Jasnos, 2021. "Hydrogeochemical Characteristics of Geothermal Waters from Mesozoic Formations in the Basement of the Central Part of the Carpathian Foredeep and the Carpathians (Poland) Using Multivariate Statistica," Energies, MDPI, vol. 14(13), pages 1-31, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:7:p:1215-:d:104536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.