IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i2p217-d89504.html
   My bibliography  Save this article

Influence of Road Patterns on PM 2.5 Concentrations and the Available Solutions: The Case of Beijing City, China

Author

Listed:
  • Fang Wang

    (Sino-German Joint Laboratory on Urbanization and Locality Research (UAL), College of Architecture and Landscape Architecture, Peking University, Beijing 100871, China)

  • Yaoyao Peng

    (Sino-German Joint Laboratory on Urbanization and Locality Research (UAL), College of Architecture and Landscape Architecture, Peking University, Beijing 100871, China)

  • Chunyan Jiang

    (Sino-German Joint Laboratory on Urbanization and Locality Research (UAL), College of Architecture and Landscape Architecture, Peking University, Beijing 100871, China)

Abstract

With the increase in urbanization and energy consumption, PM 2.5 has become a major pollutant. This paper investigates the impact of road patterns on PM 2.5 pollution in Beijing, focusing on two questions: Do road patterns significantly affect PM 2.5 concentrations? How do road patterns affect PM 2.5 concentrations? A land-use regression model (LUR model) is used to quantify the associations between PM 2.5 concentrations, and road patterns, land-use patterns, and population density. Then, in the condition of excluding other factors closely correlated to PM 2.5 concentrations, based on the results of the regression model, further research is conducted to explore the relationship between PM 2.5 concentrations and the types, densities, and layouts of road networks, through the controlling variables method. The results are as follows: (1) the regression coefficient of road patterns is significantly higher than the water area, population density, and transport facilities, indicating that road patterns have an obvious influence on PM 2.5 concentrations; (2) under the same traffic carrying capacity, the layout of “a tight network of streets and small blocks” is superior to that of “a sparse network of streets and big blocks”; (3) the grade proportion of urban roads impacts the road patterns’ rationality, and a high percentage of branch roads and secondary roads could decrease PM 2.5 concentrations. These findings could provide a reference for the improvement of the traffic structure and air quality of Beijing.

Suggested Citation

  • Fang Wang & Yaoyao Peng & Chunyan Jiang, 2017. "Influence of Road Patterns on PM 2.5 Concentrations and the Available Solutions: The Case of Beijing City, China," Sustainability, MDPI, vol. 9(2), pages 1-17, February.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:2:p:217-:d:89504
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/2/217/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/2/217/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Int Panis, L. & Beckx, C. & Broekx, S. & De Vlieger, I. & Schrooten, L. & Degraeuwe, B. & Pelkmans, L., 2011. "PM, NOx and CO2 emission reductions from speed management policies in Europe," Transport Policy, Elsevier, vol. 18(1), pages 32-37, January.
    2. Lisa Schweitzer & Jiangping Zhou, 2010. "Neighborhood Air Quality, Respiratory Health, and Vulnerable Populations in Compact and Sprawled Regions," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 363-371.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinghan Xu & Weijie Ren, 2019. "Application of a Hybrid Model Based on Echo State Network and Improved Particle Swarm Optimization in PM 2.5 Concentration Forecasting: A Case Study of Beijing, China," Sustainability, MDPI, vol. 11(11), pages 1-19, May.
    2. Bumseok Chun & Kwangyul Choi & Qisheng Pan, 2022. "Key determinants of particulate matter 2.5 concentrations in urban environments with scenario analysis," Environment and Planning B, , vol. 49(7), pages 1980-1994, September.
    3. Grazia Ghermandi & Sara Fabbi & Giorgio Veratti & Alessandro Bigi & Sergio Teggi, 2020. "Estimate of Secondary NO 2 Levels at Two Urban Traffic Sites Using Observations and Modelling," Sustainability, MDPI, vol. 12(19), pages 1-13, September.
    4. Yifei Wang & Xin Zhang & Hideki Nakamura, 2024. "Left-Turn Lane Capacity Estimation based on the Vehicle Yielding Maneuver Model to Pedestrians at Signalized Intersections," Sustainability, MDPI, vol. 16(6), pages 1-13, March.
    5. Hongyou Lu & Yunchan Zhu & Yu Qi & Jinliang Yu, 2018. "Do Urban Subway Openings Reduce PM 2.5 Concentrations? Evidence from China," Sustainability, MDPI, vol. 10(11), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Filipi Nikol & Karlínová Bára & Krčál Ondřej, 2022. "The disutility of driving below the speed limit on highways," Review of Economic Perspectives, Sciendo, vol. 22(4), pages 267-277, December.
    2. Juwon Chung & Seung-Nam Kim & Hyungkyoo Kim, 2019. "The Impact of PM 10 Levels on Pedestrian Volume: Findings from Streets in Seoul, South Korea," IJERPH, MDPI, vol. 16(23), pages 1-23, December.
    3. Xin Lin & Chris M. J. Tampère & Stef Proost, 2020. "Optimizing Traffic System Performance with Environmental Constraints: Tolls and/or Additional Delays," Networks and Spatial Economics, Springer, vol. 20(1), pages 137-177, March.
    4. Hedefalk, Finn & van Dijk, Ingrid K & Dribe, Martin, 2022. "Childhood neighborhoods and cause-specific adult mortality in Sweden 1939-2015," SocArXiv ynpb3, Center for Open Science.
    5. Pawinee Iamtrakul & Sararad Chayphong & Adrian Yat Wai Lo, 2022. "Exploring the Contribution of Social and Economic Status Factors (SES) to the Development of Learning Cities (LC)," Sustainability, MDPI, vol. 14(19), pages 1-20, October.
    6. Boeing, Geoff & Pilgram, Clemens & Lu, Yougeng, 2024. "Urban Street Network Design and Transport-Related Greenhouse Gas Emissions around the World," SocArXiv r32vj, Center for Open Science.
    7. Jung Eun Kang & D.K. Yoon & Hyun-Joo Bae, 2019. "Evaluating the effect of compact urban form on air quality in Korea," Environment and Planning B, , vol. 46(1), pages 179-200, January.
    8. Figueroa, Maria J. & Nielsen, Thomas A. Sick & Siren, Anu, 2014. "Comparing urban form correlations of the travel patterns of older and younger adults," Transport Policy, Elsevier, vol. 35(C), pages 10-20.
    9. Mogno, Caterina & Fontaras, Georgios & Arcidiacono, Vincenzo & Komnos, Dimitrios & Pavlovic, Jelica & Ciuffo, Biagio & Makridis, Michail & Valverde, Victor, 2022. "The application of the CO2MPAS model for vehicle CO2 emissions estimation over real traffic conditions," Transport Policy, Elsevier, vol. 124(C), pages 152-159.
    10. Rui Wang & Quan Yuan, 2017. "Are denser cities greener? Evidence from China, 2000–2010," Natural Resources Forum, Blackwell Publishing, vol. 41(3), pages 179-189, August.
    11. Nitzsche, Eric & Tscharaktschiew, Stefan, 2013. "Efficiency of speed limits in cities: A spatial computable general equilibrium assessment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 56(C), pages 23-48.
    12. Fiamma Perez-Prada & Andres Monzon & Cristina Valdes, 2017. "Managing Traffic Flows for Cleaner Cities: The Role of Green Navigation Systems," Energies, MDPI, vol. 10(6), pages 1-18, June.
    13. Jones, Peter & Lucas, Karen, 2012. "The social consequences of transport decision-making: clarifying concepts, synthesising knowledge and assessing implications," Journal of Transport Geography, Elsevier, vol. 21(C), pages 4-16.
    14. LEE, Sungwon & LEE, Bumsoo, 2020. "Comparing the impacts of local land use and urban spatial structure on household VMT and GHG emissions," Journal of Transport Geography, Elsevier, vol. 84(C).
    15. Peter Newman, 2014. "Density, the Sustainability Multiplier: Some Myths and Truths with Application to Perth, Australia," Sustainability, MDPI, vol. 6(9), pages 1-21, September.
    16. Jiayi Tang & Aonghus McNabola & Bruce Misstear & Francesco Pilla & Md Saniul Alam, 2019. "Assessing the Impact of Vehicle Speed Limits and Fleet Composition on Air Quality Near a School," IJERPH, MDPI, vol. 16(1), pages 1-23, January.
    17. Wei Pan & Xiaolu Chen & Xiaojun Duan, 2022. "Energy dissipation and particulate emission at traffic bottleneck based on NaSch model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(7), pages 1-13, July.
    18. Marco Guerrieri & Ferdinando Corriere & Gianfranco Rizzo & Barbara Lo Casto & Gianluca Scaccianoce, 2015. "Improving the Sustainability of Transportation: Environmental and Functional Benefits of Right Turn By-Pass Lanes at Roundabouts," Sustainability, MDPI, vol. 7(5), pages 1-19, May.
    19. Man Yuan & Mingrui Yan & Zhuoran Shan, 2021. "Is Compact Urban Form Good for Air Quality? A Case Study from China Based on Hourly Smartphone Data," Land, MDPI, vol. 10(5), pages 1-14, May.
    20. Jiansheng Wu & Junhao Zhou & Wen Zhang, 2020. "A Framework to Classify Environmental Inequity in Absolute and Relative Terms, and Its Application in Beijing," Sustainability, MDPI, vol. 12(11), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:2:p:217-:d:89504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.