IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i1p121-d87872.html
   My bibliography  Save this article

Biochars as Potential Adsorbers of CH 4 , CO 2 and H 2 S

Author

Listed:
  • Sumathi Sethupathi

    (Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia)

  • Ming Zhang

    (Department of Environmental Engineering, China Jiliang University, Hangzhou 310018, China)

  • Anushka Upamali Rajapaksha

    (Korea Biochar Research Center & School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
    Department of Basic Sciences, Faculty of Health Sciences, The Open University of Sri Lanka, Nawala, Nugegoda 10250, Sri Lanka)

  • Sang Ryong Lee

    (National Institute of Animal Science, RDA, Wanju55365, Korea)

  • Norhusna Mohamad Nor

    (School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia)

  • Abdul Rahman Mohamed

    (School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia)

  • Mohammad Al-Wabel

    (Soil Science Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia)

  • Sang Soo Lee

    (Korea Biochar Research Center & School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon 24341, Korea)

  • Yong Sik Ok

    (Korea Biochar Research Center & School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon 24341, Korea)

Abstract

Methane gas, as one of the major biogases, is a potential source of renewable energy for power production. Biochar can be readily used to purify biogas contaminants such as H 2 S and CO 2 . This study assessed the adsorption of CH 4 , H 2 S, and CO 2 onto four different types of biochars. The adsorption dynamics of biochars were investigated in a fixed-bed column, by determining the breakthrough curves and adsorption capacities of biochars. The physicochemical properties of biochars were considered to justify the adsorption performance. The results showed that CH 4 was not adsorbed well by the subjected biochars whereas CO 2 and H 2 S were successfully captured. The H 2 S and CO 2 breakthrough capacity were related to both the surface adsorption and chemical reaction. The adsorption capacity was in the following order: perilla > soybean stover > Korean oak > Japanese oak biochars. The simultaneous adsorption also leads to a competition of sorption sites. Biochars are a promising material for the biogas purification industry.

Suggested Citation

  • Sumathi Sethupathi & Ming Zhang & Anushka Upamali Rajapaksha & Sang Ryong Lee & Norhusna Mohamad Nor & Abdul Rahman Mohamed & Mohammad Al-Wabel & Sang Soo Lee & Yong Sik Ok, 2017. "Biochars as Potential Adsorbers of CH 4 , CO 2 and H 2 S," Sustainability, MDPI, vol. 9(1), pages 1-10, January.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:1:p:121-:d:87872
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/1/121/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/1/121/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ohimain, Elijah Ige & Izah, Sylvester Chibueze, 2017. "A review of biogas production from palm oil mill effluents using different configurations of bioreactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 242-253.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tayibi, S. & Monlau, F. & Bargaz, A. & Jimenez, R. & Barakat, A., 2021. "Synergy of anaerobic digestion and pyrolysis processes for sustainable waste management: A critical review and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Dissanayake, Pavani Dulanja & You, Siming & Igalavithana, Avanthi Deshani & Xia, Yinfeng & Bhatnagar, Amit & Gupta, Souradeep & Kua, Harn Wei & Kim, Sumin & Kwon, Jung-Hwan & Tsang, Daniel C.W. & Ok, , 2020. "Biochar-based adsorbents for carbon dioxide capture: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    4. Xue Li & Hang Liu & Ning Liu & Zhentao Sun & Shifeng Fu & Xiumei Zhan & Jinfeng Yang & Rongxin Zhou & Hongda Zhang & Jiming Zhang & Xiaori Han, 2023. "Pyrolysis temperature had effects on the physicochemical properties of biochar," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 69(8), pages 363-373.
    5. Chiappero, Marco & Norouzi, Omid & Hu, Mingyu & Demichelis, Francesca & Berruti, Franco & Di Maria, Francesco & Mašek, Ondřej & Fiore, Silvia, 2020. "Review of biochar role as additive in anaerobic digestion processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khatun, Rahima & Reza, Mohammad Imam Hasan & Moniruzzaman, M. & Yaakob, Zahira, 2017. "Sustainable oil palm industry: The possibilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 608-619.
    2. Zain, Munirah Md & Mohamed, Abdul Rahman, 2018. "An overview on conversion technologies to produce value added products from CH4 and CO2 as major biogas constituents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 56-63.
    3. A Aziz, Md Maniruzzaman & Kassim, Khairul Anuar & ElSergany, Moetaz & Anuar, Syed & Jorat, M. Ehsan & Yaacob, H. & Ahsan, Amimul & Imteaz, Monzur A. & Arifuzzaman,, 2020. "Recent advances on palm oil mill effluent (POME) pretreatment and anaerobic reactor for sustainable biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. Qyyum, Muhammad Abdul & Haider, Junaid & Qadeer, Kinza & Valentina, Valentina & Khan, Amin & Yasin, Muhammad & Aslam, Muhammad & De Guido, Giorgia & Pellegrini, Laura A. & Lee, Moonyong, 2020. "Biogas to liquefied biomethane: Assessment of 3P's–Production, processing, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    5. Loganath, Radhakrishnan & Senophiyah-Mary, J., 2020. "Critical review on the necessity of bioelectricity generation from slaughterhouse industry waste and wastewater using different anaerobic digestion reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Chong, Daniel Jia Sheng & Chan, Yi Jing & Arumugasamy, Senthil Kumar & Yazdi, Sara Kazemi & Lim, Jun Wei, 2023. "Optimisation and performance evaluation of response surface methodology (RSM), artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) in the prediction of biogas production ," Energy, Elsevier, vol. 266(C).
    7. Cui, Peiqi & Ge, Jiye & Chen, Yingyun & Zhao, Yilin & Wang, Shaojie & Su, Haijia, 2022. "The Fe3O4 nanoparticles-modified mycelium pellet-based anaerobic granular sludge enhanced anaerobic digestion of food waste with high salinity and organic load," Renewable Energy, Elsevier, vol. 185(C), pages 376-385.
    8. Ng, Denny K.S. & Wong, Sarah L.X. & Andiappan, Viknesh & Ng, Lik Yin, 2023. "Mathematical optimisation for sustainable bio-methane (Bio-CH4) production from palm oil mill effluent (POME)," Energy, Elsevier, vol. 265(C).
    9. Fasil Ayelegn Tassew & Wenche Hennie Bergland & Carlos Dinamarca & Roald Kommedal & Rune Bakke, 2019. "Granular Sludge Bed Processes in Anaerobic Digestion of Particle-Rich Substrates," Energies, MDPI, vol. 12(15), pages 1-20, July.
    10. Cheng, Yoke Wang & Chong, Chi Cheng & Lee, Soon Poh & Lim, Jun Wei & Wu, Ta Yeong & Cheng, Chin Kui, 2020. "Syngas from palm oil mill effluent (POME) steam reforming over lanthanum cobaltite: Effects of net-basicity," Renewable Energy, Elsevier, vol. 148(C), pages 349-362.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:1:p:121-:d:87872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.