IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v7y2015i7p9088-9099d52477.html
   My bibliography  Save this article

CFD Analysis of Convective Heat Transfer Coefficient on External Surfaces of Buildings

Author

Listed:
  • Andrea De Lieto Vollaro

    (Department of Ingegneria Astronautica, Elettrica ed Energetica, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

  • Giorgio Galli

    (Department of Ingegneria Astronautica, Elettrica ed Energetica, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

  • Andrea Vallati

    (Department of Ingegneria Astronautica, Elettrica ed Energetica, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

Abstract

Convective heat transfer coefficients for external building surfaces are essential in building energy simulation (BES) to calculate convective heat gains and losses from building facades and roofs to the environment. These coefficients are complex functions of: building geometry, building surroundings, local air flow patterns and temperature differences. A microclimatic analysis in a typical urban configuration, has been carried out using Ansys Fluent Version 14.0, an urban street canyon, with a given H/W ratio, has been considered to simulate a three-dimensional flow field and to calculate the thermal fluid dynamics parameters that characterize the street canyon. In this paper, the convective heat transfer coefficient values on the windward external façade of the canyon and on the windward and leeward inner walls are analyzed and a comparison with values from experimental and numerical correlations is carried out.

Suggested Citation

  • Andrea De Lieto Vollaro & Giorgio Galli & Andrea Vallati, 2015. "CFD Analysis of Convective Heat Transfer Coefficient on External Surfaces of Buildings," Sustainability, MDPI, vol. 7(7), pages 1-12, July.
  • Handle: RePEc:gam:jsusta:v:7:y:2015:i:7:p:9088-9099:d:52477
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/7/7/9088/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/7/7/9088/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrea De Lieto Vollaro & Giuseppe De Simone & Roberto Romagnoli & Andrea Vallati & Simone Botillo, 2014. "Numerical Study of Urban Canyon Microclimate Related to Geometrical Parameters," Sustainability, MDPI, vol. 6(11), pages 1-12, November.
    2. Łopata, Stanisław & Ocłoń, Paweł, 2015. "Numerical study of the effect of fouling on local heat transfer conditions in a high-temperature fin-and-tube heat exchanger," Energy, Elsevier, vol. 92(P1), pages 100-116.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriele Battista & Tiziano Pagliaroli & Luca Mauri & Carmine Basilicata & Roberto De Lieto Vollaro, 2016. "Assessment of the Air Pollution Level in the City of Rome (Italy)," Sustainability, MDPI, vol. 8(9), pages 1-15, August.
    2. Jiying Liu & Mohammad Heidarinejad & Saber Khoshdel Nikkho & Nicholas W. Mattise & Jelena Srebric, 2019. "Quantifying Impacts of Urban Microclimate on a Building Energy Consumption—A Case Study," Sustainability, MDPI, vol. 11(18), pages 1-21, September.
    3. Piotr Michalak, 2021. "Experimental and Theoretical Study on the Internal Convective and Radiative Heat Transfer Coefficients for a Vertical Wall in a Residential Building," Energies, MDPI, vol. 14(18), pages 1-22, September.
    4. Fabio Nardecchia & Benedetta Mattoni & Francesca Pagliaro & Lucia Cellucci & Fabio Bisegna & Franco Gugliermetti, 2016. "Computational Fluid Dynamic Modelling of Thermal Periodic Stabilized Regime in Passive Buildings," Sustainability, MDPI, vol. 8(11), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jose-Manuel Almodovar-Melendo & Joseph-Maria Cabeza-Lainez, 2018. "Environmental Features of Chinese Architectural Heritage: The Standardization of Form in the Pursuit of Equilibrium with Nature," Sustainability, MDPI, vol. 10(7), pages 1-19, July.
    2. Andrea Vallati & Stefano Grignaffini & Marco Romagna, 2015. "A New Method to Energy Saving in a Micro Grid," Sustainability, MDPI, vol. 7(10), pages 1-16, October.
    3. Tian, Jiayang & Wang, Yufei & Feng, Xiao, 2016. "Simultaneous optimization of flow velocity and cleaning schedule for mitigating fouling in refinery heat exchanger networks," Energy, Elsevier, vol. 109(C), pages 1118-1129.
    4. Ahmed Yasser Abdelmejeed & Dietwald Gruehn, 2023. "Optimization of Microclimate Conditions Considering Urban Morphology and Trees Using ENVI-Met: A Case Study of Cairo City," Land, MDPI, vol. 12(12), pages 1-34, December.
    5. Ocłoń, Paweł & Łopata, Stanisław & Stelmach, Tomasz & Li, Mingjie & Zhang, Jian-Fei & Mzad, Hocine & Tao, Wen-Quan, 2021. "Design optimization of a high-temperature fin-and-tube heat exchanger manifold – A case study," Energy, Elsevier, vol. 215(PB).
    6. Zhang, Pan & Ma, Ting & Li, Wei-Dong & Ma, Guang-Yu & Wang, Qiu-Wang, 2018. "Design and optimization of a novel high temperature heat exchanger for waste heat cascade recovery from exhaust flue gases," Energy, Elsevier, vol. 160(C), pages 3-18.
    7. Vazquez, Luis & Blanco, Jesús María & Ramis, Rolando & Peña, Francisco & Diaz, David, 2015. "Robust methodology for steady state measurements estimation based framework for a reliable long term thermal power plant operation performance monitoring," Energy, Elsevier, vol. 93(P1), pages 923-944.
    8. Gabriele Battista & Emiliano Carnielo & Luca Evangelisti & Marco Frascarolo & Roberto De Lieto Vollaro, 2015. "Energy Performance and Thermal Comfort of a High Efficiency House: RhOME for denCity, Winner of Solar Decathlon Europe 2014," Sustainability, MDPI, vol. 7(7), pages 1-15, July.
    9. Chong Peng & Chu Li & Zuyu Zou & Suwan Shen & Dongqi Sun, 2015. "Improvement of Air Quality and Thermal Environment in an Old City District by Constructing Wind Passages," Sustainability, MDPI, vol. 7(9), pages 1-21, September.
    10. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2017. "A review on the CFD analysis of urban microclimate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1613-1640.
    11. Jiying Liu & Mohammad Heidarinejad & Saber Khoshdel Nikkho & Nicholas W. Mattise & Jelena Srebric, 2019. "Quantifying Impacts of Urban Microclimate on a Building Energy Consumption—A Case Study," Sustainability, MDPI, vol. 11(18), pages 1-21, September.
    12. Sadeghianjahromi, Ali & Wang, Chi-Chuan, 2021. "Heat transfer enhancement in fin-and-tube heat exchangers – A review on different mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    13. Hong Jin & Liang Qiao & Peng Cui, 2020. "Study on the Effect of Streets’ Space Forms on Campus Microclimate in the Severe Cold Region of China—Case Study of a University Campus in Daqing City," IJERPH, MDPI, vol. 17(22), pages 1-20, November.
    14. Chong Peng & Tingzhen Ming & Jianquan Cheng & Yongjia Wu & Zhong-Ren Peng, 2015. "Modeling Thermal Comfort and Optimizing Local Renewal Strategies—A Case Study of Dazhimen Neighborhood in Wuhan City," Sustainability, MDPI, vol. 7(3), pages 1-20, March.
    15. Shao, Suola & Zhang, Huan & Fan, Xianwang & You, Shijun & Wang, Yaran & Wei, Shen, 2021. "Thermodynamic and economic analysis of the air source heat pump system with direct-condensation radiant heating panel," Energy, Elsevier, vol. 225(C).
    16. Zima, Wiesław & Nowak-Ocłoń, Marzena & Ocłoń, Paweł, 2018. "Novel online simulation-ready models of conjugate heat transfer in combustion chamber waterwall tubes of supercritical power boilers," Energy, Elsevier, vol. 148(C), pages 809-823.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:7:y:2015:i:7:p:9088-9099:d:52477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.