IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v7y2015i11p14834-14858d58398.html
   My bibliography  Save this article

Monitoring Cropland Dynamics of the Yellow River Delta based on Multi-Temporal Landsat Imagery over 1986 to 2015

Author

Listed:
  • Quanlong Feng

    (State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, No. 20 Datun Road, Chaoyang District, Beijing 100101, China)

  • Jianhua Gong

    (State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, No. 20 Datun Road, Chaoyang District, Beijing 100101, China
    Zhejiang-CAS Application Center for Geoinformatics, No. 568 Jinyang East Road, Jiashan 314100, China)

  • Jiantao Liu

    (State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, No. 20 Datun Road, Chaoyang District, Beijing 100101, China)

  • Yi Li

    (State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, No. 20 Datun Road, Chaoyang District, Beijing 100101, China)

Abstract

Natural deltas can provide human beings with flat and fertile land to be cultivated. It is important to monitor cropland dynamics to provide policy-relevant information for regional sustainable development. This paper utilized Landsat imagery to study the cropland dynamics of the Yellow River Delta during the last three decades. Multi-temporal Landsat data were used to account for the phenological variations of different plants. Several spectral and textural features were adopted to increase the between-class separability. The robust random forest classifier was used to generate the land cover maps of the Yellow River Delta for 1986, 1995, 2005 and 2015. Experimental results indicated that the proposed methodology showed good performance with an average classification accuracy of 89.44%. The spatial-temporal analysis indicated that the cropland area increased from 467.6 km 2 in 1986 to 718.5 km 2 in 2015 with an average growth rate of 8.65 km 2 /year. The newly created croplands were mainly due to the reclamation of grassland and bare soil while the losses of croplands were due to abandoned cultivation and urban sprawl. The results demonstrate that a sustainable perspective should be adopted by the decision makers in order to simultaneously maintain food security, industrial development and ecosystem safety.

Suggested Citation

  • Quanlong Feng & Jianhua Gong & Jiantao Liu & Yi Li, 2015. "Monitoring Cropland Dynamics of the Yellow River Delta based on Multi-Temporal Landsat Imagery over 1986 to 2015," Sustainability, MDPI, vol. 7(11), pages 1-25, November.
  • Handle: RePEc:gam:jsusta:v:7:y:2015:i:11:p:14834-14858:d:58398
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/7/11/14834/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/7/11/14834/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anibal Gusso & Cristina Cafruni & Fabiane Bordin & Mauricio Roberto Veronez & Leticia Lenz & Sabrina Crija, 2015. "Multi-Temporal Patterns of Urban Heat Island as Response to Economic Growth Management," Sustainability, MDPI, vol. 7(3), pages 1-17, March.
    2. Shasha Lu & Xingliang Guan & Chao He & Jiali Zhang, 2014. "Spatio-Temporal Patterns and Policy Implications of Urban Land Expansion in Metropolitan Areas: A Case Study of Wuhan Urban Agglomeration, Central China," Sustainability, MDPI, vol. 6(8), pages 1-26, July.
    3. Hui Wang & Xuegong Xu & Gaoru Zhu, 2015. "Landscape Changes and a Salt Production Sustainable Approach in the State of Salt Pan Area Decreasing on the Coast of Tianjin, China," Sustainability, MDPI, vol. 7(8), pages 1-20, July.
    4. Marcos Adami & Bernardo Friedrich Theodor Rudorff & Ramon Morais Freitas & Daniel Alves Aguiar & Luciana Miura Sugawara & Marcio Pupin Mello, 2012. "Remote Sensing Time Series to Evaluate Direct Land Use Change of Recent Expanded Sugarcane Crop in Brazil," Sustainability, MDPI, vol. 4(4), pages 1-12, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yingjie Hu & Xiangbin Kong & Ji Zheng & Jin Sun & Linlin Wang & Mingzhe Min, 2018. "Urban Expansion and Farmland Loss in Beijing during 1980–2015," Sustainability, MDPI, vol. 10(11), pages 1-20, October.
    2. Jamal Jokar Arsanjani & Eric Vaz, 2017. "Special Issue Editorial: Earth Observation and Geoinformation Technologies for Sustainable Development," Sustainability, MDPI, vol. 9(5), pages 1-5, May.
    3. Ciro Apollonio & Gabriella Balacco & Antonio Novelli & Eufemia Tarantino & Alberto Ferruccio Piccinni, 2016. "Land Use Change Impact on Flooding Areas: The Case Study of Cervaro Basin (Italy)," Sustainability, MDPI, vol. 8(10), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mercure, J.-F. & Paim, M.A. & Bocquillon, P. & Lindner, S. & Salas, P. & Martinelli, P. & Berchin, I.I. & de Andrade Guerra, J.B.S.O & Derani, C. & de Albuquerque Junior, C.L. & Ribeiro, J.M.P. & Knob, 2019. "System complexity and policy integration challenges: The Brazilian Energy- Water-Food Nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 230-243.
    2. Ming Tang & Huchang Liao & Zhengjun Wan & Enrique Herrera-Viedma & Marc A. Rosen, 2018. "Ten Years of Sustainability (2009 to 2018): A Bibliometric Overview," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    3. Maurício Roberto Cherubin & João Luís Nunes Carvalho & Carlos Eduardo Pellegrino Cerri & Luiz Augusto Horta Nogueira & Glaucia Mendes Souza & Heitor Cantarella, 2021. "Land Use and Management Effects on Sustainable Sugarcane-Derived Bioenergy," Land, MDPI, vol. 10(1), pages 1-24, January.
    4. Bernardo F. T. Rudorff & Marcos Adami & Joel Risso & Daniel Alves De Aguiar & Bernardo Pires & Daniel Amaral & Leandro Fabiani & Izabel Cecarelli, 2012. "Remote Sensing Images to Detect Soy Plantations in the Amazon Biome—The Soy Moratorium Initiative," Sustainability, MDPI, vol. 4(5), pages 1-15, May.
    5. Lin Zhang & Zhe Liu & Diyou Liu & Quan Xiong & Ning Yang & Tianwei Ren & Chao Zhang & Xiaodong Zhang & Shaoming Li, 2019. "Crop Mapping Based on Historical Samples and New Training Samples Generation in Heilongjiang Province, China," Sustainability, MDPI, vol. 11(18), pages 1-17, September.
    6. Keles, Derya & Choumert-Nkolo, Johanna & Combes Motel, Pascale & Nazindigouba Kéré, Eric, 2018. "Does the expansion of biofuels encroach on the forest?," Journal of Forest Economics, Elsevier, vol. 33(C), pages 75-82.
    7. Anjinho, Phelipe da Silva & Barbosa, Mariana Abibi Guimarães Araujo & Costa, Carlos Wilmer & Mauad, Frederico Fábio, 2021. "Environmental fragility analysis in reservoir drainage basin land use planning: A Brazilian basin case study," Land Use Policy, Elsevier, vol. 100(C).
    8. Marjorie M. Guarenghi & Danilo F. T. Garofalo & Joaquim E. A. Seabra & Marcelo M. R. Moreira & Renan M. L. Novaes & Nilza Patrícia Ramos & Sandra F. Nogueira & Cristiano A. de Andrade, 2023. "Land Use Change Net Removals Associated with Sugarcane in Brazil," Land, MDPI, vol. 12(3), pages 1-26, February.
    9. Biao Zhang & Dian Shao & Zhonghu Zhang, 2022. "Spatio-Temporal Evolution Dynamic, Effect and Governance Policy of Construction Land Use in Urban Agglomeration: Case Study of Yangtze River Delta, China," Sustainability, MDPI, vol. 14(10), pages 1-36, May.
    10. Fabiana Liar Agudo & Barbara Stolte Bezerra & José Alcides Gobbo & Luis Alberto Bertolucci Paes, 2022. "Unfolding research themes for industrial symbiosis and underlying theories," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1682-1702, December.
    11. Anibal Gusso & André Silva & John Boland & Leticia Lenz & Conrad Philipp, 2017. "Income Driven Patterns of the Urban Environment," Sustainability, MDPI, vol. 9(2), pages 1-20, February.
    12. Pedro Nuñez-Cacho & Jaroslaw Górecki & Valentín Molina-Moreno & Francisco A. Corpas-Iglesias, 2018. "What Gets Measured, Gets Done: Development of a Circular Economy Measurement Scale for Building Industry," Sustainability, MDPI, vol. 10(7), pages 1-22, July.
    13. Luca Fraccascia & Ilaria Giannoccaro & Vito Albino, 2017. "Efficacy of Landfill Tax and Subsidy Policies for the Emergence of Industrial Symbiosis Networks: An Agent-Based Simulation Study," Sustainability, MDPI, vol. 9(4), pages 1-18, March.
    14. Stefania Bonafoni & Giorgio Baldinelli & Paolo Verducci & Andrea Presciutti, 2017. "Remote Sensing Techniques for Urban Heating Analysis: A Case Study of Sustainable Construction at District Level," Sustainability, MDPI, vol. 9(8), pages 1-12, July.
    15. Yang Liu & Peng Cheng & Li Hu, 2022. "How do justice and top management beliefs matter in industrial symbiosis collaboration: An exploratory study from China," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 891-906, June.
    16. A.S. Duden & P.A. Verweij & A.P.C. Faaij & D. Baisero & C. Rondinini & F. van der Hilst, 2020. "Biodiversity Impacts of Increased Ethanol Production in Brazil," Land, MDPI, vol. 9(1), pages 1-17, January.
    17. Yaoping Cui & Xinliang Xu & Jinwei Dong & Yaochen Qin, 2016. "Influence of Urbanization Factors on Surface Urban Heat Island Intensity: A Comparison of Countries at Different Developmental Phases," Sustainability, MDPI, vol. 8(8), pages 1-14, July.
    18. Zhifeng Liu & Chunyang He & Jianguo Wu, 2016. "General Spatiotemporal Patterns of Urbanization: An Examination of 16 World Cities," Sustainability, MDPI, vol. 8(1), pages 1-15, January.
    19. Angela Neves & Radu Godina & Susana G. Azevedo & Carina Pimentel & João C.O. Matias, 2019. "The Potential of Industrial Symbiosis: Case Analysis and Main Drivers and Barriers to Its Implementation," Sustainability, MDPI, vol. 11(24), pages 1-68, December.
    20. Korah, Prosper Issahaku & Nunbogu, Abraham Marshall & Akanbang, Bernard Afiik Akanpabadai, 2018. "Spatio-temporal dynamics and livelihoods transformation in Wa, Ghana," Land Use Policy, Elsevier, vol. 77(C), pages 174-185.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:7:y:2015:i:11:p:14834-14858:d:58398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.