IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v7y2015i10p13351-13377d56532.html
   My bibliography  Save this article

LEED Credit Review System and Optimization Model for Pursuing LEED Certification

Author

Listed:
  • Jin Ouk Choi

    (Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China)

  • Ankit Bhatla

    (Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, 1 University Station C1752, Austin, TX 78712, USA)

  • Christopher M. Stoppel

    (Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, 1 University Station C1752, Austin, TX 78712, USA)

  • Jennifer S. Shane

    (Department of Civil, Construction and Environmental Engineering, Iowa State University, 498 Town Engineering, Ames, IA 5001, USA)

Abstract

Incorporating sustainability in construction can result in desirable building attributes and project life cycle. The Leadership in Engineering and Environmental Design (LEED ® ) Rating System helps project teams make the right green building decisions for their projects through a process. However, in current practice, project teams do not have a systematic procedure or tool for choosing the LEED credits appropriate for a particular project. The researchers have developed a tool, which support the LEED integrative process during a charrette, and developed an optimization model that can be utilized to assist project teams determine which credits to pursue for LEED certification, taking into account potential benefits associated with any LEED credit. The tool enables owners to incorporate sustainability in construction by helping the project teams make the right green building decisions for their projects through an integrated procedure.

Suggested Citation

  • Jin Ouk Choi & Ankit Bhatla & Christopher M. Stoppel & Jennifer S. Shane, 2015. "LEED Credit Review System and Optimization Model for Pursuing LEED Certification," Sustainability, MDPI, vol. 7(10), pages 1-27, September.
  • Handle: RePEc:gam:jsusta:v:7:y:2015:i:10:p:13351-13377:d:56532
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/7/10/13351/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/7/10/13351/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Julian Canto-Perello & Maria P. Martinez-Garcia & Jorge Curiel-Esparza & Manuel Martin-Utrillas, 2015. "Implementing Sustainability Criteria for Selecting a Roof Assembly Typology in Medium Span Buildings," Sustainability, MDPI, vol. 7(6), pages 1-18, May.
    2. Fabrizio Ascione & Nicola Bianco & Rosa Francesca De Masi & Gerardo Maria Mauro & Giuseppe Peter Vanoli, 2015. "Design of the Building Envelope: A Novel Multi-Objective Approach for the Optimization of Energy Performance and Thermal Comfort," Sustainability, MDPI, vol. 7(8), pages 1-28, August.
    3. Devi Bühler & Thorsten Schuetze & Ranka Junge, 2015. "Towards Development of a Label for Zero Emission Buildings: A Tool to Evaluate Potential Zero Emission Buildings," Sustainability, MDPI, vol. 7(5), pages 1-23, April.
    4. Bibiana Alarcon & Antonio Aguado & Resmundo Manga & Alejandro Josa, 2010. "A Value Function for Assessing Sustainability: Application to Industrial Buildings," Sustainability, MDPI, vol. 3(1), pages 1-16, December.
    5. Steffen Lehmann, 2011. "Optimizing Urban Material Flows and Waste Streams in Urban Development through Principles of Zero Waste and Sustainable Consumption," Sustainability, MDPI, vol. 3(1), pages 1-29, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Sánchez Cordero & Sergio Gómez Melgar & José Manuel Andújar Márquez, 2019. "Green Building Rating Systems and the New Framework Level(s): A Critical Review of Sustainability Certification within Europe," Energies, MDPI, vol. 13(1), pages 1-25, December.
    2. Zhixing Li & Mimi Tian & Xiaoqing Zhu & Shujing Xie & Xin He, 2022. "A Review of Integrated Design Process for Building Climate Responsiveness," Energies, MDPI, vol. 15(19), pages 1-35, September.
    3. Duy Hoang Pham & Byeol Kim & Joosung Lee & Abraham Chiwon Ahn & Yonghan Ahn, 2020. "A Comprehensive Analysis: Sustainable Trends and Awarded LEED 2009 Credits in Vietnam," Sustainability, MDPI, vol. 12(3), pages 1-15, January.
    4. Eunyoung Kim & Eunkyoung Hwang, 2017. "Analysis of the Current Scoring Distribution by Evaluation Criteria in Korean Long-Life Housing Certification System Cases," Sustainability, MDPI, vol. 9(10), pages 1-20, October.
    5. Aynur Kazaz & Seyda Adiguzel Istil, 2019. "A Comparative Analysis of Sunshine Duration Effects in terms of Renewable Energy Production Rates on The LEED BD + C Projects in Turkey," Energies, MDPI, vol. 12(6), pages 1-9, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anja Hansen & Jörn Budde & Annette Prochnow, 2016. "Resource Usage Strategies and Trade-Offs between Cropland Demand, Fossil Fuel Consumption, and Greenhouse Gas Emissions—Building Insulation as an Example," Sustainability, MDPI, vol. 8(7), pages 1-24, June.
    2. Emanuele Bonamente & Franco Cotana, 2015. "Carbon and Energy Footprints of Prefabricated Industrial Buildings: A Systematic Life Cycle Assessment Analysis," Energies, MDPI, vol. 8(11), pages 1-17, November.
    3. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    4. Chris Turner & John Oyekan & Lampros K. Stergioulas, 2021. "Distributed Manufacturing: A New Digital Framework for Sustainable Modular Construction," Sustainability, MDPI, vol. 13(3), pages 1-16, February.
    5. García Kerdan, Iván & Raslan, Rokia & Ruyssevelt, Paul & Morillón Gálvez, David, 2017. "A comparison of an energy/economic-based against an exergoeconomic-based multi-objective optimisation for low carbon building energy design," Energy, Elsevier, vol. 128(C), pages 244-263.
    6. Rafael Lizarralde & Jaione Ganzarain & Mikel Zubizarreta, 2020. "Assessment and Selection of Technologies for the Sustainable Development of an R&D Center," Sustainability, MDPI, vol. 12(23), pages 1-23, December.
    7. Daniel Otero Peña & Daniela Perrotti & Eugene Mohareb, 2022. "Advancing urban metabolism studies through GIS data: Resource flows, open space networks, and vulnerable communities in Mexico City," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1333-1349, August.
    8. Reza Kiani Mavi & Denise Gengatharen & Neda Kiani Mavi & Richard Hughes & Alistair Campbell & Ross Yates, 2021. "Sustainability in Construction Projects: A Systematic Literature Review," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    9. Mirko S. Winkler & Samuel Fuhrimann & Phuc Pham-Duc & Guéladio Cissé & Jürg Utzinger & Hung Nguyen-Viet, 2017. "Assessing potential health impacts of waste recovery and reuse business models in Hanoi, Vietnam," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 62(1), pages 7-16, February.
    10. Amasyali, Kadir & El-Gohary, Nora M., 2021. "Real data-driven occupant-behavior optimization for reduced energy consumption and improved comfort," Applied Energy, Elsevier, vol. 302(C).
    11. Hasim Altan & Bertug Ozarisoy, 2022. "An Analysis of the Development of Modular Building Design Elements to Improve Thermal Performance of a Representative High Rise Residential Estate in the Coastline City of Famagusta, Cyprus," Sustainability, MDPI, vol. 14(7), pages 1-50, March.
    12. Delgarm, N. & Sajadi, B. & Kowsary, F. & Delgarm, S., 2016. "Multi-objective optimization of the building energy performance: A simulation-based approach by means of particle swarm optimization (PSO)," Applied Energy, Elsevier, vol. 170(C), pages 293-303.
    13. Xin Jin & Geoffrey Q. P. Shen & Qian-Cheng Wang & E. M. A. C. Ekanayake & Siqi Fan, 2021. "Promoting Construction Industrialisation with Policy Interventions: A Holistic Review of Published Policy Literature," IJERPH, MDPI, vol. 18(23), pages 1-23, November.
    14. Jane Loveday & Gregory M. Morrison & David A. Martin, 2022. "Identifying Knowledge and Process Gaps from a Systematic Literature Review of Net-Zero Definitions," Sustainability, MDPI, vol. 14(5), pages 1-37, March.
    15. Haleh Boostani & Polat Hancer, 2018. "A Model for External Walls Selection in Hot and Humid Climates," Sustainability, MDPI, vol. 11(1), pages 1-23, December.
    16. Jolanta Šadauskienė & Juozas Ramanauskas & Lina Šeduikytė & Mindaugas Daukšys & Algimantas Vasylius, 2015. "A Simplified Methodology for Evaluating the Impact of Point Thermal Bridges on the High-Energy Performance of a Passive House," Sustainability, MDPI, vol. 7(12), pages 1-16, December.
    17. Fabrizio Ascione & Nicola Bianco & Claudio De Stasio & Gerardo Maria Mauro & Giuseppe Peter Vanoli, 2017. "Addressing Large-Scale Energy Retrofit of a Building Stock via Representative Building Samples: Public and Private Perspectives," Sustainability, MDPI, vol. 9(6), pages 1-18, June.
    18. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2016. "Multi-stage and multi-objective optimization for energy retrofitting a developed hospital reference building: A new approach to assess cost-optimality," Applied Energy, Elsevier, vol. 174(C), pages 37-68.
    19. Premalatha, M. & Tauseef, S.M. & Abbasi, Tasneem & Abbasi, S.A., 2013. "The promise and the performance of the world's first two zero carbon eco-cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 660-669.
    20. Jasmina Locke & Jacinta Dsilva & Saniya Zarmukhambetova, 2023. "Decarbonization Strategies in the UAE Built Environment: An Evidence-Based Analysis Using COP26 and COP27 Recommendations," Sustainability, MDPI, vol. 15(15), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:7:y:2015:i:10:p:13351-13377:d:56532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.