IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i4p1401-d1335076.html
   My bibliography  Save this article

Methodology for Modernizing Local Gas-Fired District Heating Systems into a Central District Heating System Using Gas-Fired Cogeneration Engines—A Case Study

Author

Listed:
  • Dawid Czajor

    (Doctoral School of Poznan University of Technology, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznan, Poland
    Institute of Environmental Engineering and Building Installations, Faculty of Environmental Engineering and Energy, Poznan University of Technology, ul. Berdychowo 4, 61-131 Poznan, Poland)

  • Łukasz Amanowicz

    (Institute of Environmental Engineering and Building Installations, Faculty of Environmental Engineering and Energy, Poznan University of Technology, ul. Berdychowo 4, 61-131 Poznan, Poland)

Abstract

Sustainability can be achieved by improving process efficiency, among other methods. In the case of heat supply systems for cities, one of the ways to increase the efficiency of fuel use, and thus reduce resource consumption and greenhouse gas emissions, is the generation of heat and electricity in one process—the use of cogeneration (CHP). The main goal of this paper is to deliver the methodology for a step-by-step modernization process for local gas-fired heating plants through the use of gas cogeneration engines in common central district heating systems. The presented methodology was applied on the basis of a real system located in north-western Poland (case study from Białogard). The profitability of cogeneration was simulated against the background of changing gas prices. The financial and environmental profit from modernization was calculated. The technical requirements that had to be met in order to adapt the existing heating system to cooperation with the new energy source were also presented. The importance of selecting the supply and return temperature of water in the heating system after modernization was emphasized. Based on investment experience, we show that installing a cogeneration engine improves a company’s financial result by 33% (calculated as the difference between the revenue from the sale of energy and the cost of gas only) and is less harmful to the environment, among other benefits, significantly reducing CO 2 emissions by 78%.

Suggested Citation

  • Dawid Czajor & Łukasz Amanowicz, 2024. "Methodology for Modernizing Local Gas-Fired District Heating Systems into a Central District Heating System Using Gas-Fired Cogeneration Engines—A Case Study," Sustainability, MDPI, vol. 16(4), pages 1-30, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1401-:d:1335076
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/4/1401/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/4/1401/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jobel Jose & Rajesh Kanna Parthasarathy & Senthil Kumar Arumugam, 2023. "Energy and Exergy Analysis of a Combined Cooling Heating and Power System with Regeneration," Sustainability, MDPI, vol. 15(18), pages 1-17, September.
    2. Katarzyna Ratajczak & Łukasz Amanowicz & Katarzyna Pałaszyńska & Filip Pawlak & Joanna Sinacka, 2023. "Recent Achievements in Research on Thermal Comfort and Ventilation in the Aspect of Providing People with Appropriate Conditions in Different Types of Buildings—Semi-Systematic Review," Energies, MDPI, vol. 16(17), pages 1-55, August.
    3. Katharina Koch & Bastian Alt & Matthias Gaderer, 2020. "Dynamic Modeling of a Decarbonized District Heating System with CHP Plants in Electricity-Based Mode of Operation," Energies, MDPI, vol. 13(16), pages 1-15, August.
    4. Krzysztof Gaska & Agnieszka Generowicz & Anna Gronba-Chyła & Józef Ciuła & Iwona Wiewiórska & Paweł Kwaśnicki & Marcin Mala & Krzysztof Chyła, 2023. "Artificial Intelligence Methods for Analysis and Optimization of CHP Cogeneration Units Based on Landfill Biogas as a Progress in Improving Energy Efficiency and Limiting Climate Change," Energies, MDPI, vol. 16(15), pages 1-19, July.
    5. Michał Turski & Agnieszka Jachura, 2022. "Life Cycle Assessment of Dispersed Phase Change Material Heat Accumulators for Cooperation with Buildings in the District Heating System," Energies, MDPI, vol. 15(16), pages 1-24, August.
    6. Marco Gambini & Stefano Mazzoni & Michela Vellini, 2023. "The Role of Cogeneration in the Electrification Pathways towards Decarbonization," Energies, MDPI, vol. 16(15), pages 1-23, July.
    7. Daniel Cardoso & Daniel Nunes & João Faria & Paulo Fael & Pedro D. Gaspar, 2023. "Intelligent Micro-Cogeneration Systems for Residential Grids: A Sustainable Solution for Efficient Energy Management," Energies, MDPI, vol. 16(13), pages 1-21, July.
    8. Agnieszka Konopelko & Luiza Kostecka-Tomaszewska & Katarzyna Czerewacz-Filipowicz, 2023. "Rethinking EU Countries’ Energy Security Policy Resulting from the Ongoing Energy Crisis: Polish and German Standpoints," Energies, MDPI, vol. 16(13), pages 1-22, July.
    9. Łukasz Amanowicz & Katarzyna Ratajczak & Edyta Dudkiewicz, 2023. "Recent Advancements in Ventilation Systems Used to Decrease Energy Consumption in Buildings—Literature Review," Energies, MDPI, vol. 16(4), pages 1-39, February.
    10. Sharf, Miel & Romm, Iliya & Palman, Michael & Zelazo, Daniel & Cukurel, Beni, 2022. "Economic dispatch of a single micro gas turbine under CHP operation with uncertain demands," Applied Energy, Elsevier, vol. 309(C).
    11. Mattia De Rosa & Vincenzo Bianco & Henrik Barth & Patricia Pereira da Silva & Carlos Vargas Salgado & Fabiano Pallonetto, 2023. "Technologies and Strategies to Support Energy Transition in Urban Building and Transportation Sectors," Energies, MDPI, vol. 16(11), pages 1-16, May.
    12. Behnam Roshanzadeh & Ashkan Asadi & Gowtham Mohan, 2023. "Technical and Economic Feasibility Analysis of Solar Inlet Air Cooling Systems for Combined Cycle Power Plants," Energies, MDPI, vol. 16(14), pages 1-23, July.
    13. Kertu Lepiksaar & Vladislav Mašatin & Igor Krupenski & Anna Volkova, 2023. "Effects of Coupling Combined Heat and Power Production with District Cooling," Energies, MDPI, vol. 16(12), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariusz Starzec & Sabina Kordana-Obuch & Beata Piotrowska, 2024. "Evaluation of the Suitability of Using Artificial Neural Networks in Assessing the Effectiveness of Greywater Heat Exchangers," Sustainability, MDPI, vol. 16(7), pages 1-26, March.
    2. Łukasz Jan Orman & Natalia Siwczuk & Norbert Radek & Stanislav Honus & Jerzy Zbigniew Piotrowski & Luiza Dębska, 2024. "Comparative Analysis of Subjective Indoor Environment Assessment in Actual and Simulated Conditions," Energies, MDPI, vol. 17(3), pages 1-16, January.
    3. Paola Clerici Maestosi & Monica Salvia & Filomena Pietrapertosa & Federica Romagnoli & Michela Pirro, 2024. "Implementation of Positive Energy Districts in European Cities: A Systematic Literature Review to Identify the Effective Integration of the Concept into the Existing Energy Systems," Energies, MDPI, vol. 17(3), pages 1-27, February.
    4. Sabina Kordana-Obuch & Michał Wojtoń & Mariusz Starzec & Beata Piotrowska, 2023. "Opportunities and Challenges for Research on Heat Recovery from Wastewater: Bibliometric and Strategic Analyses," Energies, MDPI, vol. 16(17), pages 1-36, September.
    5. Beata Piotrowska & Daniel Słyś, 2023. "Analysis of the Life Cycle Cost of a Heat Recovery System from Greywater Using a Vertical “Tube-in-Tube” Heat Exchanger: Case Study of Poland," Resources, MDPI, vol. 12(9), pages 1-17, August.
    6. Piotr Michalak, 2023. "Simulation and Experimental Study on the Use of Ventilation Air for Space Heating of a Room in a Low-Energy Building," Energies, MDPI, vol. 16(8), pages 1-17, April.
    7. Roberta De Robbio, 2023. "Micro Gas Turbine Role in Distributed Generation with Renewable Energy Sources," Energies, MDPI, vol. 16(2), pages 1-37, January.
    8. Mariusz Starzec & Sabina Kordana-Obuch, 2024. "Evaluating the Utility of Selected Machine Learning Models for Predicting Stormwater Levels in Small Streams," Sustainability, MDPI, vol. 16(2), pages 1-29, January.
    9. Hyoung Tae Kim & Gen Soo Song & Sangwook Han, 2020. "Power Generation Optimization of the Combined Cycle Power-Plant System Comprising Turbo Expander Generator and Trigen in Conjunction with the Reinforcement Learning Technique," Sustainability, MDPI, vol. 12(20), pages 1-14, October.
    10. Katarzyna Ratajczak & Edward Szczechowiak & Aneta Pobudkowska, 2023. "Energy-Saving Scenarios of an Existing Swimming Pool with the Use of Simple In Situ Measurement," Energies, MDPI, vol. 16(16), pages 1-25, August.
    11. Izabela Jonek-Kowalska & Sara Rupacz, 2023. "The Innovative Nature of Selected Polish Companies in the Energy Sector Compared to the Use of Renewable Energy Sources from a Financial and an Investor’s Perspective," Resources, MDPI, vol. 12(12), pages 1-19, December.
    12. Dong Pan & Bao Wang & Jun Li & Fei Wu, 2024. "Exploring the User Adoption Mechanism of Green Transportation Services in the Context of the Electricity–Carbon Market Synergy," Energies, MDPI, vol. 17(1), pages 1-19, January.
    13. Sabina Kordana-Obuch & Mariusz Starzec, 2023. "Experimental Development of the Horizontal Drain Water Heat Recovery Unit," Energies, MDPI, vol. 16(12), pages 1-24, June.
    14. Volpe, R. & Catrini, P. & Piacentino, A. & Fichera, A., 2022. "An agent-based model to support the preliminary design and operation of heating and power grids with cogeneration units and photovoltaic panels in densely populated areas," Energy, Elsevier, vol. 261(PB).
    15. Mahaut Vauchez & Jacopo Famiglietti & Kevin Autelitano & Morgane Colombert & Rossano Scoccia & Mario Motta, 2023. "Life Cycle Assessment of District Heating Infrastructures: A Comparison of Pipe Typologies in France," Energies, MDPI, vol. 16(9), pages 1-23, May.
    16. Tanja M. Kneiske, 2023. "Reducing CO 2 Emissions for PV-CHP Hybrid Systems by Using a Hierarchical Control Algorithm," Energies, MDPI, vol. 16(17), pages 1-24, August.
    17. Paweł Szałański & Piotr Kowalski & Wojciech Cepiński & Piotr Kęskiewicz, 2023. "The Effect of Lowering Indoor Air Temperature on the Reduction in Energy Consumption and CO 2 Emission in Multifamily Buildings in Poland," Sustainability, MDPI, vol. 15(15), pages 1-19, August.
    18. Katarzyna Ratajczak & Łukasz Amanowicz & Katarzyna Pałaszyńska & Filip Pawlak & Joanna Sinacka, 2023. "Recent Achievements in Research on Thermal Comfort and Ventilation in the Aspect of Providing People with Appropriate Conditions in Different Types of Buildings—Semi-Systematic Review," Energies, MDPI, vol. 16(17), pages 1-55, August.
    19. Jie Huang & Fei Xu & Zilong Wang & Hua Zhang, 2023. "An Experimental Investigation on the Performance of a Water Storage Tank with Sodium Acetate Trihydrate," Energies, MDPI, vol. 16(2), pages 1-14, January.
    20. Mengyang Chen & Nan Li & Hailin Mu, 2024. "Assessing Risks on China’s Natural Gas Supply under Carbon Peaking Policies from Foreign–Domestic Perspectives," Energies, MDPI, vol. 17(4), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1401-:d:1335076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.