IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2023i1p78-d1304439.html
   My bibliography  Save this article

Socio-Economic Vulnerability Assessment for Supporting a Sustainable Pandemic Management in Austria

Author

Listed:
  • Vanessa Streifeneder

    (Department of Geoinformatics—Z_GIS, University of Salzburg, 5020 Salzburg, Austria)

  • Stefan Kienberger

    (Department of Geoinformatics—Z_GIS, University of Salzburg, 5020 Salzburg, Austria
    GeoSphere Austria, RiskLab—Weather, Climate and Natural Hazards, 1190 Vienna, Austria)

  • Steffen Reichel

    (Spatial Services GmbH, 5020 Salzburg, Austria)

  • Daniel Hölbling

    (Department of Geoinformatics—Z_GIS, University of Salzburg, 5020 Salzburg, Austria)

Abstract

The outbreaks of a new pandemic in 2019 let humankind face a new type of challenge. People and groups in vulnerable situations were especially affected. Increasing urbanization, climate change, and global travel raise the likelihood of pandemics. COVID-19 has shown that sustainable and well-planned pandemic management is necessary, which also includes and identifies people in vulnerable situations. In this study, a socio-economic vulnerability assessment (VA) for supporting improved pandemic/epidemic risk management at the municipality level in Austria was conducted. The VA provides a holistic overview of the vulnerability under pre-event conditions in Austria, which can be used to support pandemic management. Therefore, we calculated a composite indicator with expert-based weighting. The necessary indicators were defined through a literature review and an expert consortium consisting of practical and scientific members. As a result, an interactive map containing the vulnerability index (VI) for each municipality was created, making it possible to also assess underlying vulnerable factors to support decision-making. The applicability of the VA was shown in the relationship between a high VI in a municipality and a high number of deaths. A limiting factor to the VA was the missing data for health indicators for the whole of Austria. Hence, we provide a list with recommendations on which data should be collected to improve the VA in the future.

Suggested Citation

  • Vanessa Streifeneder & Stefan Kienberger & Steffen Reichel & Daniel Hölbling, 2023. "Socio-Economic Vulnerability Assessment for Supporting a Sustainable Pandemic Management in Austria," Sustainability, MDPI, vol. 16(1), pages 1-23, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:78-:d:1304439
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/1/78/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/1/78/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Blanco, Esther & Baier, Alexandra & Holzmeister, Felix & Jaber-Lopez, Tarek & Struwe, Natalie, 2022. "Substitution of social sustainability concerns under the Covid-19 pandemic," Ecological Economics, Elsevier, vol. 192(C).
    2. J. Birkmann & O. Cardona & M. Carreño & A. Barbat & M. Pelling & S. Schneiderbauer & S. Kienberger & M. Keiler & D. Alexander & P. Zeil & T. Welle, 2013. "Framing vulnerability, risk and societal responses: the MOVE framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 193-211, June.
    3. Felix Kwabena Donkor & Stergios-Aristoteles Mitoulis & Sotirios Argyroudis & Hassan Aboelkhair & Juan Antonio Ballesteros Canovas & Ahmad Bashir & Ginbert Permejo Cuaton & Samo Diatta & Maral Habibi &, 2022. "SDG Final Decade of Action: Resilient Pathways to Build Back Better from High-Impact Low-Probability (HILP) Events," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    4. Jose Manuel Diaz-Sarachaga & Daniel Jato-Espino, 2020. "Analysis of vulnerability assessment frameworks and methodologies in urban areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 437-457, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Liu & Zhenwu Shi & Dan Wang, 2016. "Measuring and mapping the flood vulnerability based on land-use patterns: a case study of Beijing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1545-1565, September.
    2. Gressel, Christie M. & Rashed, Tarek & Maciuika, Laura Aswati & Sheshadri, Srividya & Coley, Christopher & Kongeseri, Sreeram & Bhavani, Rao R, 2020. "Vulnerability mapping: A conceptual framework towards a context-based approach to women’s empowerment," World Development Perspectives, Elsevier, vol. 20(C).
    3. Abdur Rahim Hamidi & Jiangwei Wang & Shiyao Guo & Zhongping Zeng, 2020. "Flood vulnerability assessment using MOVE framework: a case study of the northern part of district Peshawar, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 385-408, March.
    4. Guy Jackson, 2020. "The influence of emergency food aid on the causal disaster vulnerability of Indigenous food systems," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 37(3), pages 761-777, September.
    5. Deepal Doshi & Matthias Garschagen, 2020. "Understanding Adaptation Finance Allocation: Which Factors Enable or Constrain Vulnerable Countries to Access Funding?," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    6. Jorge Varanda & Luzia Gonçalves & Isabel Craveiro, 2020. "The Unlikely Saviour: Portugal’s National Health System and the Initial Impact of the COVID-19 Pandemic?," Development, Palgrave Macmillan;Society for International Deveopment, vol. 63(2), pages 291-297, December.
    7. Anna Ágústsdóttir, 2015. "Ecosystem approach for natural hazard mitigation of volcanic tephra in Iceland: building resilience and sustainability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1669-1691, September.
    8. Muhammad Irshad Ahmad & Hengyun Ma, 2020. "Climate Change and Livelihood Vulnerability in Mixed Crop–Livestock Areas: The Case of Province Punjab, Pakistan," Sustainability, MDPI, vol. 12(2), pages 1-31, January.
    9. Eleonora Giovene di Girasole & Daniele Cannatella, 2017. "Social Vulnerability to Natural Hazards in Urban Systems. An Application in Santo Domingo (Dominican Republic)," Sustainability, MDPI, vol. 9(11), pages 1-17, November.
    10. Sébastien Dujardin & Damien Jacques & Jessica Steele & Catherine Linard, 2020. "Mobile Phone Data for Urban Climate Change Adaptation: Reviewing Applications, Opportunities and Key Challenges," Sustainability, MDPI, vol. 12(4), pages 1-17, February.
    11. Yi Ge & Wen Dou & Jianping Dai, 2017. "A New Approach to Identify Social Vulnerability to Climate Change in the Yangtze River Delta," Sustainability, MDPI, vol. 9(12), pages 1-19, December.
    12. Uttama Barua & Shahrin Mannan & Ishrat Islam & Mohammad Shakil Akther & Md. Aminul Islam & Tamanna Akter & Raquib Ahsan & Mehedy Ahmed Ansary, 2020. "People’s awareness, knowledge and perception influencing earthquake vulnerability of a community: A study on Ward no. 14, Mymensingh Municipality, Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 1121-1181, August.
    13. Linda Menk & Christian Neuwirth & Stefan Kienberger, 2020. "Mapping the Structure of Social Vulnerability Systems for Malaria in East Africa," Sustainability, MDPI, vol. 12(12), pages 1-19, June.
    14. Pablo Aznar-Crespo & Antonio Aledo & Joaquín Melgarejo-Moreno & Arturo Vallejos-Romero, 2021. "Adapting Social Impact Assessment to Flood Risk Management," Sustainability, MDPI, vol. 13(6), pages 1-27, March.
    15. Navdeep Agrawal & Laxmi Gupta & Jagabandhu Dixit, 2021. "Assessment of the Socioeconomic Vulnerability to Seismic Hazards in the National Capital Region of India Using Factor Analysis," Sustainability, MDPI, vol. 13(17), pages 1-19, August.
    16. Jesús Vargas & Pilar Paneque, 2019. "Challenges for the Integration of Water Resource and Drought-Risk Management in Spain," Sustainability, MDPI, vol. 11(2), pages 1-16, January.
    17. M. A. Aalst & E. Koomen & H. L. F. Groot, 2023. "Vulnerability and Resilience to Drought and Saltwater Intrusion of Rice Farming Households in the Mekong Delta, Vietnam," Economics of Disasters and Climate Change, Springer, vol. 7(3), pages 407-430, November.
    18. Christoph Aubrecht & Patrick Meier & Hannes Taubenböck, 2017. "Speeding up the clock in remote sensing: identifying the ‘black spots’ in exposure dynamics by capitalizing on the full spectrum of joint high spatial and temporal resolution," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 177-182, March.
    19. Yi Chen & Tao Liu & Ruishan Chen & Mengke Zhao, 2020. "Influence of the Built Environment on Community Flood Resilience: Evidence from Nanjing City, China," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    20. Zhaoqi Zeng & Wenxiang Wu & Zhaolei Li & Yang Zhou & Han Huang, 2019. "Quantitative Assessment of Agricultural Drought Risk in Southeast Gansu Province, Northwest China," Sustainability, MDPI, vol. 11(19), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:78-:d:1304439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.