IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i4p3422-d1066988.html
   My bibliography  Save this article

Energy Cost Assessment and Optimization of Post-COVID-19 Building Ventilation Strategies

Author

Listed:
  • Antiopi-Malvina Stamatellou

    (Department of Mechanical Engineering, University of Thessaly, 383 34 Volos, Greece)

  • Olympia Zogou

    (Department of Mechanical Engineering, University of Thessaly, 383 34 Volos, Greece)

  • Anastassios Stamatelos

    (Department of Mechanical Engineering, University of Thessaly, 383 34 Volos, Greece)

Abstract

The advent of the COVID-19 pandemic puts stress on the requirements of indoor air quality. Significant improvements in the design of building ventilation systems have become necessary, as this allows for the supply of higher quantities of outdoor air in buildings. Additional capital investment is necessary for increases in the size of ventilation fans and ducts, as well as for the installation of efficient air-to-air recuperators, to recover the enthalpy of the rejected air. To address the increased operation costs, smart strategies are necessary to make rational use of the ventilation system. The required modifications are studied in the example of an 18-zone office building located in Volos, Greece. The building’s energy performance is studied by means of transient simulation. Operation of the ground-coupled heat pump, the upgraded ventilation system and the high-performance recuperators and filters’ interactions is presented in detail at various time scales. The results show the effect of increased ventilation requirements of new and renovated office and commercial buildings in the post-COVID era. The added capital equipment and operation costs must be met with a strong and sustained engineering effort. Especially in the case of nZEB buildings, the protection of public health must be attained, with reduction of the added electricity consumption penalties, in order to keep the nZEB character of the building.

Suggested Citation

  • Antiopi-Malvina Stamatellou & Olympia Zogou & Anastassios Stamatelos, 2023. "Energy Cost Assessment and Optimization of Post-COVID-19 Building Ventilation Strategies," Sustainability, MDPI, vol. 15(4), pages 1-24, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3422-:d:1066988
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/4/3422/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/4/3422/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. George Stamatellos & Olympia Zogou & Anastassios Stamatelos, 2021. "Energy Performance Optimization of a House with Grid-Connected Rooftop PV Installation and Air Source Heat Pump," Energies, MDPI, vol. 14(3), pages 1-23, January.
    2. Safa, Amir A. & Fung, Alan S. & Kumar, Rakesh, 2015. "Heating and cooling performance characterisation of ground source heat pump system by testing and TRNSYS simulation," Renewable Energy, Elsevier, vol. 83(C), pages 565-575.
    3. Murtaza Mohammadi & John Calautit, 2021. "Impact of Ventilation Strategy on the Transmission of Outdoor Pollutants into Indoor Environment Using CFD," Sustainability, MDPI, vol. 13(18), pages 1-18, September.
    4. George Stamatellos & Olympia Zogou & Anastassios Stamatelos, 2022. "Energy Analysis of a NZEB Office Building with Rooftop PV Installation: Exploitation of the Employees’ Electric Vehicles Battery Storage," Energies, MDPI, vol. 15(17), pages 1-24, August.
    5. Hamdani Hamdani & Fajar Salamul Sabri & Harapan Harapan & Maimun Syukri & Razali Razali & Rudi Kurniawan & Irwansyah Irwansyah & Sarwo Edhy Sofyan & Teuku Meurah Indra Mahlia & Samsul Rizal, 2022. "HVAC Control Systems for a Negative Air Pressure Isolation Room and Its Performance," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
    6. Sang, Jingmeng & Liu, Xin & Liang, Chuanzhi & Feng, Guohui & Li, Zonghan & Wu, Xiuhui & Song, Mengmeng, 2022. "Differences between design expectations and actual operation of ground source heat pumps for green buildings in the cold region of northern China," Energy, Elsevier, vol. 252(C).
    7. Huang, Shuai & Zhu, Ke & Dong, Jiankai & Li, Ji & Kong, Weizheng & Jiang, Yiqiang & Fang, Zhaohong, 2022. "Heat transfer performance of deep borehole heat exchanger with different operation modes," Renewable Energy, Elsevier, vol. 193(C), pages 645-656.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. George Stamatellos & Olympia Zogou & Anastassios Stamatelos, 2022. "Energy Analysis of a NZEB Office Building with Rooftop PV Installation: Exploitation of the Employees’ Electric Vehicles Battery Storage," Energies, MDPI, vol. 15(17), pages 1-24, August.
    2. George Stamatellos & Tassos Stamatelos, 2023. "Study of an nZEB Office Building with Storage in Electric Vehicle Batteries and Dispatch of a Natural Gas-Fuelled Generator," Energies, MDPI, vol. 16(7), pages 1-20, April.
    3. Elias Roumpakias & Tassos Stamatelos, 2023. "Comparative Performance Analysis of a Grid-Connected Photovoltaic Plant in Central Greece after Several Years of Operation Using Neural Networks," Sustainability, MDPI, vol. 15(10), pages 1-26, May.
    4. Fredrik Skaug Fadnes & Reyhaneh Banihabib & Mohsen Assadi, 2023. "Using Artificial Neural Networks to Gather Intelligence on a Fully Operational Heat Pump System in an Existing Building Cluster," Energies, MDPI, vol. 16(9), pages 1-33, May.
    5. Yucheng He & Sanika Ravindra Nishandar & Rufus David Edwards & Marko Princevac, 2023. "Air Quality Modeling of Cooking Stove Emissions and Exposure Assessment in Rural Areas," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
    6. Won-Suk Yang & Young Il Kim, 2022. "Cooling Performance Enhancement of a 20 RT (70 kW) Two-Evaporator Heat Pump with a Vapor–Liquid Separator," Energies, MDPI, vol. 15(11), pages 1-18, May.
    7. Yelnar Yerdesh & Tangnur Amanzholov & Abdurashid Aliuly & Abzal Seitov & Amankeldy Toleukhanov & Mohanraj Murugesan & Olivier Botella & Michel Feidt & Hua Sheng Wang & Alexandr Tsoy & Yerzhan Belyayev, 2022. "Experimental and Theoretical Investigations of a Ground Source Heat Pump System for Water and Space Heating Applications in Kazakhstan," Energies, MDPI, vol. 15(22), pages 1-25, November.
    8. Elżbieta Jadwiga Szymańska & Maria Kubacka & Joanna Woźniak & Jan Polaszczyk, 2022. "Analysis of Residential Buildings in Poland for Potential Energy Renovation toward Zero-Emission Construction," Energies, MDPI, vol. 15(24), pages 1-24, December.
    9. Andrea Zambito & Giovanni Pernigotto & Simon Pezzutto & Andrea Gasparella, 2022. "Parametric Urban-Scale Analysis of Space Cooling Energy Needs and Potential Photovoltaic Integration in Residential Districts in South-West Europe," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
    10. Guo, Jinyi & Bilbao, Jose I. & Sproul, Alistair B., 2020. "A novel solar cooling cycle – A ground coupled PV/T desiccant cooling (GPVTDC) system with low heat source temperatures," Renewable Energy, Elsevier, vol. 162(C), pages 1273-1284.
    11. Jingyu Cao & Wei Wu & Mingke Hu & Yunfeng Wang, 2023. "Green Building Technologies Targeting Carbon Neutrality," Energies, MDPI, vol. 16(2), pages 1-3, January.
    12. Liu, Zhijian & Xu, Wei & Zhai, Xue & Qian, Cheng & Chen, Xi, 2017. "Feasibility and performance study of the hybrid ground-source heat pump system for one office building in Chinese heating dominated areas," Renewable Energy, Elsevier, vol. 101(C), pages 1131-1140.
    13. Franco, Alessandro & Fantozzi, Fabio, 2016. "Experimental analysis of a self consumption strategy for residential building: The integration of PV system and geothermal heat pump," Renewable Energy, Elsevier, vol. 86(C), pages 1075-1085.
    14. Wang, Yang & Gillich, Aaron & LU, Daisy & Saber, Esmail Mahmoudi & Yebiyo, Metkel & Kang, Ren & Ford, Andy & Hewitt, Mark, 2021. "Performance prediction and evaluation on the first balanced energy networks (BEN) part I: BEN and building internal factors," Energy, Elsevier, vol. 221(C).
    15. Joud Al Dakheel & Kheira Tabet Aoul & Ahmed Hassan, 2018. "Enhancing Green Building Rating of a School under the Hot Climate of UAE; Renewable Energy Application and System Integration," Energies, MDPI, vol. 11(9), pages 1-14, September.
    16. Tangnur Amanzholov & Abzal Seitov & Abdurashid Aliuly & Yelnar Yerdesh & Mohanraj Murugesan & Olivier Botella & Michel Feidt & Hua Sheng Wang & Yerzhan Belyayev & Amankeldy Toleukhanov, 2022. "Thermal Response Measurement and Performance Evaluation of Borehole Heat Exchangers: A Case Study in Kazakhstan," Energies, MDPI, vol. 15(22), pages 1-31, November.
    17. Wang, Yang & Zhang, Shanhong & Chow, David & Kuckelkorn, Jens M., 2021. "Evaluation and optimization of district energy network performance: Present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    18. Mariusz Niekurzak & Wojciech Lewicki & Wojciech Drożdż & Paweł Miązek, 2022. "Measures for Assessing the Effectiveness of Investments for Electricity and Heat Generation from the Hybrid Cooperation of a Photovoltaic Installation with a Heat Pump on the Example of a Household," Energies, MDPI, vol. 15(16), pages 1-20, August.
    19. Mariusz Niekurzak & Jerzy Mikulik, 2023. "Business Models in Terms of the Strategy for Sustainable Management in Economic Entities Taking into Account Energy Transformation," Energies, MDPI, vol. 16(11), pages 1-17, May.
    20. Battaglia, Vittoria & Vanoli, Laura & Verde, Clara & Nithiarasu, Perumal & Searle, Justin R., 2023. "Dynamic modelling of geothermal heat pump system coupled with positive-energy building," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3422-:d:1066988. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.