IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i4p2983-d1060296.html
   My bibliography  Save this article

Entropy Model of Dynamic Bus Dispatching Based on the Prediction of Back-Station Time

Author

Listed:
  • Liang Zou

    (College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China)

  • Li Guo

    (Shenzhen Urban Planning & Land Resource Research Center, Shenzhen 518060, China)

  • Lingxiang Zhu

    (College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642, China)

  • Zhitian Yu

    (College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China)

Abstract

In the actual operation of a bus, due to the influences of the passenger flow, traffic conditions and other factors, the vehicle back-station time is often delayed, which brings difficulties in commuting according to a timetable that results in the discontinuity of the bus. This is also the main disadvantage of static bus scheduling. Therefore, the “Entropy model of dynamic bus dispatching based on the prediction of back-station time” is proposed, which can be used for decreasing the passive effect of discontinuity by extending the departure interval of an early bus in advance, and to realize fairness in adjustments of the departure interval by using entropy theory. Finally, the model is validated by two examples, and the results show that the model can match the distribution pattern of the bus departure interval before and after an adjustment and as far as possible, it can reduce bus breaks, balance the occupancy rate and improve the stability of bus operations.

Suggested Citation

  • Liang Zou & Li Guo & Lingxiang Zhu & Zhitian Yu, 2023. "Entropy Model of Dynamic Bus Dispatching Based on the Prediction of Back-Station Time," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:2983-:d:1060296
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/4/2983/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/4/2983/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Zhandong & Xie, Jun & Liu, Xiaobo & Nie, Yu (Marco), 2020. "Hyperpath-based algorithms for the transit equilibrium assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    2. Sánchez-Martínez, G.E. & Koutsopoulos, H.N. & Wilson, N.H.M., 2016. "Real-time holding control for high-frequency transit with dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 1-19.
    3. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou & Ma, Changxi, 2019. "Stochastic bus schedule coordination considering demand assignment and rerouting of passengers," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 275-303.
    4. Kulkarni, Sarang & Krishnamoorthy, Mohan & Ranade, Abhiram & Ernst, Andreas T. & Patil, Rahul, 2018. "A new formulation and a column generation-based heuristic for the multiple depot vehicle scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 457-487.
    5. David Canca & Belén Navarro-Carmona & Gabriel Villa & Alejandro Zarzo, 2023. "A Multilayer Network Approach for the Bimodal Bus–Pedestrian Line Planning Problem," Mathematics, MDPI, vol. 11(19), pages 1-36, October.
    6. Perumal, Shyam S.G. & Lusby, Richard M. & Larsen, Jesper, 2022. "Electric bus planning & scheduling: A review of related problems and methodologies," European Journal of Operational Research, Elsevier, vol. 301(2), pages 395-413.
    7. Liang, Shidong & Zhao, Shuzhi & Lu, Chunxiu & Ma, Minghui, 2016. "A self-adaptive method to equalize headways: Numerical analysis and comparison," Transportation Research Part B: Methodological, Elsevier, vol. 87(C), pages 33-43.
    8. Shyam S. G. Perumal & Jesper Larsen & Richard M. Lusby & Morten Riis & Tue R. L. Christensen, 2022. "A column generation approach for the driver scheduling problem with staff cars," Public Transport, Springer, vol. 14(3), pages 705-738, October.
    9. Liu, Tao & (Avi) Ceder, Avishai, 2017. "Deficit function related to public transport: 50 year retrospective, new developments, and prospects," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 1-19.
    10. Zheng, Hankun & Sun, Huijun & Kang, Liujiang & Dai, Peiling & Wu, Jianjun, 2023. "Multi-route coordination for bus systems in response to road disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    11. Zhimei Wang & Avishai Ceder, 2017. "Efficient design of freight train operation with double-hump yards," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(12), pages 1600-1619, December.
    12. Luo, Sida & Nie, Yu (Marco), 2020. "Paired-line hybrid transit design considering spatial heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 320-339.
    13. Yiduo Huang & Zuojun Max Shen, 2021. "Optimizing timetable and network reopen plans for public transportation networks during a COVID19-like pandemic," Papers 2109.03940, arXiv.org.
    14. Fan, Wenbo & Mei, Yu & Gu, Weihua, 2018. "Optimal design of intersecting bimodal transit networks in a grid city," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 203-226.
    15. Benjamin Otto, 2019. "Aggregation techniques for frequency assignment in public transportation," Public Transport, Springer, vol. 11(1), pages 51-87, June.
    16. Boyer, Vincent & Ibarra-Rojas, Omar J. & Ríos-Solís, Yasmín Á., 2018. "Vehicle and Crew Scheduling for Flexible Bus Transportation Systems," Transportation Research Part B: Methodological, Elsevier, vol. 112(C), pages 216-229.
    17. Joana Cavadas & António Pais Antunes, 2019. "An optimization model for integrated transit-parking policy planning," Transportation, Springer, vol. 46(5), pages 1867-1891, October.
    18. Gonzalo Fernandez-Sanchez & Alvaro Fernandez-Heredia, 2018. "Strategic Thinking for Sustainability: A Review of 10 Strategies for Sustainable Mobility by Bus for Cities," Sustainability, MDPI, vol. 10(11), pages 1-15, November.
    19. Sánchez-Martínez, Gabriel E. & Koutsopoulos, Haris N. & Wilson, Nigel H.M., 2016. "Optimal allocation of vehicles to bus routes using automatically collected data and simulation modelling," Research in Transportation Economics, Elsevier, vol. 59(C), pages 268-276.
    20. Gu, Weihua & Amini, Zahra & Cassidy, Michael J., 2016. "Exploring alternative service schemes for busy transit corridors," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 126-145.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:2983-:d:1060296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.