IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v112y2018icp216-229.html
   My bibliography  Save this article

Vehicle and Crew Scheduling for Flexible Bus Transportation Systems

Author

Listed:
  • Boyer, Vincent
  • Ibarra-Rojas, Omar J.
  • Ríos-Solís, Yasmín Á.

Abstract

This article deals with the Flexible Vehicle and Crew Scheduling Problem faced by urban bus transport agencies that have to assign their resources (vehicles and drivers) to cover timetables generated at the tactical level. We aim for high quality and fast to compute solutions for this problem, considering vehicle characteristics, driver qualifications requirements for each line, and labor regulations, that is, drivers have a limited duty length, mandatory rests, a restricted consecutive driving time, and a limited extra working hours. Moreover, the starting time of the drivers shift is not fixed a priori and the breaks can be allocated anywhere in the schedule as long as labor regulations are satisfied. Thus, flexibility is required to compute drivers duty but it is also needed in scenarios where the available number of drivers and vehicles changes almost everyday. We propose a mixed-integer linear programming model and a variable neighborhood search for this problem and show the efficiency of our approaches with a large set of instances.

Suggested Citation

  • Boyer, Vincent & Ibarra-Rojas, Omar J. & Ríos-Solís, Yasmín Á., 2018. "Vehicle and Crew Scheduling for Flexible Bus Transportation Systems," Transportation Research Part B: Methodological, Elsevier, vol. 112(C), pages 216-229.
  • Handle: RePEc:eee:transb:v:112:y:2018:i:c:p:216-229
    DOI: 10.1016/j.trb.2018.04.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S019126151730125X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2018.04.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. András Kéri & Knut Haase, 2007. "Vehicle and Crew Scheduling with Flexible Timetable," Operations Research Proceedings, in: Karl-Heinz Waldmann & Ulrike M. Stocker (ed.), Operations Research Proceedings 2006, pages 339-342, Springer.
    2. de Groot, S.W. & Huisman, D., 2004. "Vehicle and crew scheduling: solving large real-world instances with an integrated approach," Econometric Institute Research Papers EI 2004-13, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Vitali Gintner & Natalia Kliewer & Leena Suhl, 2008. "A Crew Scheduling Approach for Public Transit Enhanced with Aspects from Vehicle Scheduling," Lecture Notes in Economics and Mathematical Systems, in: Mark Hickman & Pitu Mirchandani & Stefan Voß (ed.), Computer-aided Systems in Public Transport, pages 25-42, Springer.
    4. Freling, R. & Huisman, D. & Wagelmans, A.P.M., 2000. "Applying an Integrated Approach to Vehicle and Crew Scheduling in Practice," ERIM Report Series Research in Management ERS-2000-31-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    5. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    6. Knut Haase & Guy Desaulniers & Jacques Desrosiers, 2001. "Simultaneous Vehicle and Crew Scheduling in Urban Mass Transit Systems," Transportation Science, INFORMS, vol. 35(3), pages 286-303, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Weitiao & Lin, Yue & Liu, Ronghui & Jin, Wenzhou, 2022. "The multi-depot electric vehicle scheduling problem with power grid characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 322-347.
    2. Kulkarni, Sarang & Krishnamoorthy, Mohan & Ranade, Abhiram & Ernst, Andreas T. & Patil, Rahul, 2018. "A new formulation and a column generation-based heuristic for the multiple depot vehicle scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 457-487.
    3. Pan, Hanchuan & Liu, Zhigang & Yang, Lixing & Liang, Zhe & Wu, Qiang & Li, Sijie, 2021. "A column generation-based approach for integrated vehicle and crew scheduling on a single metro line with the fully automatic operation system by partial supervision," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    4. Wu, Yinghui & Yang, Hai & Zhao, Shuo & Shang, Pan, 2021. "Mitigating unfairness in urban rail transit operation: A mixed-integer linear programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 418-442.
    5. Jing Wang & Heqi Wang & Ande Chang & Chen Song, 2022. "Collaborative Optimization of Vehicle and Crew Scheduling for a Mixed Fleet with Electric and Conventional Buses," Sustainability, MDPI, vol. 14(6), pages 1-17, March.
    6. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    2. Perumal, Shyam S.G. & Lusby, Richard M. & Larsen, Jesper, 2022. "Electric bus planning & scheduling: A review of related problems and methodologies," European Journal of Operational Research, Elsevier, vol. 301(2), pages 395-413.
    3. Lukas Bach & Twan Dollevoet & Dennis Huisman, 2016. "Integrating Timetabling and Crew Scheduling at a Freight Railway Operator," Transportation Science, INFORMS, vol. 50(3), pages 878-891, August.
    4. Dennis Huisman & Richard Freling & Albert P. M. Wagelmans, 2005. "Multiple-Depot Integrated Vehicle and Crew Scheduling," Transportation Science, INFORMS, vol. 39(4), pages 491-502, November.
    5. Markó Horváth & Tamás Kis, 2019. "Computing strong lower and upper bounds for the integrated multiple-depot vehicle and crew scheduling problem with branch-and-price," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(1), pages 39-67, March.
    6. Ingmar Steinzen & Vitali Gintner & Leena Suhl & Natalia Kliewer, 2010. "A Time-Space Network Approach for the Integrated Vehicle- and Crew-Scheduling Problem with Multiple Depots," Transportation Science, INFORMS, vol. 44(3), pages 367-382, August.
    7. Bach, L. & Dollevoet, T.A.B. & Huisman, D., 2014. "Integrating Timetabling and Crew," Econometric Institute Research Papers EI 2014-03, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    8. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.
    9. Heil, Julia & Hoffmann, Kirsten & Buscher, Udo, 2020. "Railway crew scheduling: Models, methods and applications," European Journal of Operational Research, Elsevier, vol. 283(2), pages 405-425.
    10. F. Zeynep Sargut & Caner Altuntaş & Dilek Cetin Tulazoğlu, 2017. "Multi-objective integrated acyclic crew rostering and vehicle assignment problem in public bus transportation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1071-1096, October.
    11. Adil Tahir & Guy Desaulniers & Issmail El Hallaoui, 2019. "Integral column generation for the set partitioning problem," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 713-744, December.
    12. Jing-Quan Li, 2014. "Transit Bus Scheduling with Limited Energy," Transportation Science, INFORMS, vol. 48(4), pages 521-539, November.
    13. Xu, Zhandong & Xie, Jun & Liu, Xiaobo & Nie, Yu (Marco), 2020. "Hyperpath-based algorithms for the transit equilibrium assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    14. Sánchez-Martínez, G.E. & Koutsopoulos, H.N. & Wilson, N.H.M., 2016. "Real-time holding control for high-frequency transit with dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 1-19.
    15. Metrane, Abdelmoutalib & Soumis, François & Elhallaoui, Issmail, 2010. "Column generation decomposition with the degenerate constraints in the subproblem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 37-44, November.
    16. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou & Ma, Changxi, 2019. "Stochastic bus schedule coordination considering demand assignment and rerouting of passengers," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 275-303.
    17. Huisman, Dennis & Wagelmans, Albert P.M., 2006. "A solution approach for dynamic vehicle and crew scheduling," European Journal of Operational Research, Elsevier, vol. 172(2), pages 453-471, July.
    18. Kulkarni, Sarang & Krishnamoorthy, Mohan & Ranade, Abhiram & Ernst, Andreas T. & Patil, Rahul, 2018. "A new formulation and a column generation-based heuristic for the multiple depot vehicle scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 457-487.
    19. David Canca & Belén Navarro-Carmona & Gabriel Villa & Alejandro Zarzo, 2023. "A Multilayer Network Approach for the Bimodal Bus–Pedestrian Line Planning Problem," Mathematics, MDPI, vol. 11(19), pages 1-36, October.
    20. Freling, R. & Lentink, R.M. & Odijk, M.A., 2000. "Scheduling train crews: a case study for the Dutch Railways," Econometric Institute Research Papers EI 2000-17/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:112:y:2018:i:c:p:216-229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.