IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2514-d1052106.html
   My bibliography  Save this article

Global Megacities and Frequent Floods: Correlation between Urban Expansion Patterns and Urban Flood Hazards

Author

Listed:
  • Dorcas Idowu

    (Department of Civil and Environmental Engineering, College of Engineering and Computer Science, Syracuse University, Syracuse, NY 13244, USA)

  • Wendy Zhou

    (Department of Geology and Geological Engineering, Colorado School of Mines, Golden, CO 80401, USA)

Abstract

With climate change causing increased extreme weather events, megacities worldwide are experiencing unprecedentedly devastating floods and recurring flood damage. Investigating global megacities’ increased disposition to flooding will aid in developing sustainable flood-risk-management frameworks. Many studies have been conducted on the association between land-cover types and flood consequences, but few on investigating urban expansion patterns’ correlation with flood hazard and risk. This study examines the correlation between urban expansion patterns and increased flood hazards. Twelve megacities throughout the world were selected for this study. After exploring the possibility of the megacities having experienced flooding, we qualified their patterns of urban expansion and their potential to influence the elements of flood risk. Our results revealed that edge expansion and leapfrogging patterns had a strong positive correlation with statistical significance with flood hazard, while infilling had a weak positive correlation that showed no statistical significance with flood hazard. Further, we found that the megacities have all experienced devastating floods in the past two decades. Flood risk frameworks need to account for the impact of these patterns, and future urban planning designs and policies need to incorporate flood risk frameworks that account for patterns of urban expansion.

Suggested Citation

  • Dorcas Idowu & Wendy Zhou, 2023. "Global Megacities and Frequent Floods: Correlation between Urban Expansion Patterns and Urban Flood Hazards," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2514-:d:1052106
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2514/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2514/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shiqiang Du & Peijun Shi & Anton Rompaey & Jiahong Wen, 2015. "Quantifying the impact of impervious surface location on flood peak discharge in urban areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1457-1471, April.
    2. Zhichao Li & Helen Gurgel & Minmin Li & Nadine Dessay & Peng Gong, 2022. "Urban Land Expansion from Scratch to Urban Agglomeration in the Federal District of Brazil in the Past 60 Years," IJERPH, MDPI, vol. 19(3), pages 1-19, January.
    3. Jingfen Sheng & John Wilson, 2009. "Watershed urbanization and changing flood behavior across the Los Angeles metropolitan region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(1), pages 41-57, January.
    4. Ashraf Abdelkarim & Ahmed F. D. Gaber & Ibtesam I. Alkadi & Haya M. Alogayell, 2019. "Integrating Remote Sensing and Hydrologic Modeling to Assess the Impact of Land-Use Changes on the Increase of Flood Risk: A Case Study of the Riyadh–Dammam Train Track, Saudi Arabia," Sustainability, MDPI, vol. 11(21), pages 1-32, October.
    5. Philippe Bocquier, 2005. "World Urbanization Prospects," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 12(9), pages 197-236.
    6. Jarbou Bahrawi & Hatem Ewea & Ahmed Kamis & Mohamed Elhag, 2020. "Potential flood risk due to urbanization expansion in arid environments, Saudi Arabia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 795-809, October.
    7. Ahmed, Farhana & Moors, Eddy & Khan, M. Shah Alam & Warner, Jeroen & Terwisscha van Scheltinga, Catharien, 2018. "Tipping points in adaptation to urban flooding under climate change and urban growth: The case of the Dhaka megacity," Land Use Policy, Elsevier, vol. 79(C), pages 496-506.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philippe Bocquier & Sandra Bree, 2018. "A regional perspective on the economic determinants of urban transition in 19th-century France," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 38(50), pages 1535-1576.
    2. Fatmah Nassir Alqreai & Hamad Ahmed Altuwaijri, 2023. "Hydrological Modeling and Evaluation of the Efficiency of Culverts in Drainage Basins Affecting the North Railway in Wadi Malham," Sustainability, MDPI, vol. 15(19), pages 1-27, October.
    3. Hanbing Liu & Guobao Luo & Longhui Wang & Yafeng Gong, 2018. "Strength Time–Varying and Freeze–Thaw Durability of Sustainable Pervious Concrete Pavement Material Containing Waste Fly Ash," Sustainability, MDPI, vol. 11(1), pages 1-13, December.
    4. Arunima Sarkar Basu & Francesco Pilla & Srikanta Sannigrahi & Rémi Gengembre & Antoine Guilland & Bidroha Basu, 2021. "Theoretical Framework to Assess Green Roof Performance in Mitigating Urban Flooding as a Potential Nature-Based Solution," Sustainability, MDPI, vol. 13(23), pages 1-34, November.
    5. Jong Mun Lee & Minji Park & Bae Kyung Park & Jiyeon Choi & Jinsun Kim & Kyunghyun Kim & Yongseok Kim, 2021. "Evaluation of Water Circulation by Modeling: An Example of Nonpoint Source Management in the Yeongsan River Watershed," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    6. Carren Ginsburg & Philippe Bocquier & Donatien Beguy & Sulaimon Afolabi & Orvalho Augusto & Karim Derra & Frank Odhiambo & Mark Otiende & Abdramane B. Soura & Pascal Zabre & Michael White & Mark Colli, 2016. "Human capital on the move: Education as a determinant of internal migration in selected INDEPTH surveillance populations in Africa," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 34(30), pages 845-884.
    7. Klaus Eisenack & Rebecca Stecker & Diana Reckien & Esther Hoffmann, 2012. "Adaptation to climate change in the transport sector: a review of actions and actors," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(5), pages 451-469, June.
    8. Jayne, T.S. & Chamberlin, Jordan & Headey, Derek D., 2014. "Land pressures, the evolution of farming systems, and development strategies in Africa: A synthesis," Food Policy, Elsevier, vol. 48(C), pages 1-17.
    9. Cavalieri, Francesco & Franchin, Paolo & Giovinazzi, Sonia, 2023. "Multi-hazard assessment of increased flooding hazard due to earthquake-induced damage to the natural drainage system," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    10. Hui Zhang & Jiong Cheng & Zhifeng Wu & Cheng Li & Jun Qin & Tong Liu, 2018. "Effects of Impervious Surface on the Spatial Distribution of Urban Waterlogging Risk Spots at Multiple Scales in Guangzhou, South China," Sustainability, MDPI, vol. 10(5), pages 1-20, May.
    11. Charlotte Guénard & Sandrine Mesplé-Somps, 2004. "Measuring inequalities: Do the surveys give the real picture? Study of two surveys in Cote d’Ivoire and Madagascar," Working Papers DT/2004/13, DIAL (Développement, Institutions et Mondialisation), revised Dec 2004.
    12. World Bank, 2009. "Mozambique - Municipal Development in Mozambique : Lessons from the First Decade - Full report," World Bank Publications - Reports 3102, The World Bank Group.
    13. Yi Chen & Tao Liu & Ruishan Chen & Mengke Zhao, 2020. "Influence of the Built Environment on Community Flood Resilience: Evidence from Nanjing City, China," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    14. Bikram Manandhar & Shenghui Cui & Lihong Wang & Sabita Shrestha, 2023. "Urban Flood Hazard Assessment and Management Practices in South Asia: A Review," Land, MDPI, vol. 12(3), pages 1-29, March.
    15. Morteza Miri & Tayeb Raziei & Mehran Zand & Mohammad Reza Kousari, 2023. "Synoptic aspects of two flash flood-inducing heavy rainfalls in southern Iran during 2019–2020," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 2655-2672, February.
    16. Jarbou Bahrawi & Hatem Ewea & Ahmed Kamis & Mohamed Elhag, 2020. "Potential flood risk due to urbanization expansion in arid environments, Saudi Arabia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 795-809, October.
    17. Jayne, T. S. & Holtzman, John S. & Yeboah, Felix Kwame & Anderson, Jock R. & Oehmke, James F., 2016. "Agri-Food Systems and Youth Livelihoods in Sub-Saharan Africa," Food Security International Development Working Papers 249276, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    18. Avashia, Vidhee & Garg, Amit, 2020. "Implications of land use transitions and climate change on local flooding in urban areas: An assessment of 42 Indian cities," Land Use Policy, Elsevier, vol. 95(C).
    19. Loren B Landau, 2018. "Friendship fears and communities of convenience in Africa’s urban estuaries: Connection as measure of urban condition," Urban Studies, Urban Studies Journal Limited, vol. 55(3), pages 505-521, February.
    20. David E. Bloom & David Canning & Günther Fink & Tarun Khanna & Patrick Salyer, 2007. "Urban Settlement: Data, Measures, and Trends," PGDA Working Papers 2907, Program on the Global Demography of Aging.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2514-:d:1052106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.