IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p993-d1025946.html
   My bibliography  Save this article

Sexual Dimorphism and Discrimination of Barbel Steed ( Hemibarbus labeo ) in the Jinhe River, China: An Indicator of Habitat Status

Author

Listed:
  • Jing Li

    (College of Mathematics and Computer Science, Yichun University, Yichun 336000, China)

  • Yun Tuo

    (College of Life Science and Resources Environment, Yichun University, Yichun 336000, China)

  • Tiaoyi Xiao

    (Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China)

  • Cuihe Chen

    (College of Mathematics and Computer Science, Yichun University, Yichun 336000, China)

  • Guangwei Fang

    (College of Mathematics and Computer Science, Yichun University, Yichun 336000, China)

Abstract

Sex identification is linked to sexual dimorphism and is an important study issue in fish biology and aquaculture. However, owing to the unmarked sexual heteromorphism between adult Hemibarbus labeo , it is often difficult to distinguish their sex by visual observation. This study aimed to find a simple and reliable morphometric criterion for the sex identification of H. labeo using discriminant models. Forty-two morphometric traits of sixty-eight H. labeo individuals collected from the Jinhe River were measured, and 41 standardized features were calculated and analyzed. Eight trait variables from 41 standardized attributes were screened using stepwise discriminant analysis. The total classification accuracy of the model was 95.59%. Twelve standardized features significantly differed between male and female H. labeo individuals ( p < 0.05). The condition factor, body height, dorsal fin coxal length, the distance between the pelvic and anal fins, and body length were significantly greater in females than in males ( p < 0.05), suggesting that females of H. labeo in the Jinhe River were plumper than males, with a larger body size, but a smaller caudal peduncle. These results implied that the sex identification of H. labeo can be performed using the discriminant equation established in this study. This study provides a theoretical basis for endangered fish species protection and their artificial propagation.

Suggested Citation

  • Jing Li & Yun Tuo & Tiaoyi Xiao & Cuihe Chen & Guangwei Fang, 2023. "Sexual Dimorphism and Discrimination of Barbel Steed ( Hemibarbus labeo ) in the Jinhe River, China: An Indicator of Habitat Status," Sustainability, MDPI, vol. 15(2), pages 1-13, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:993-:d:1025946
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/993/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/993/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rosamond L. Naylor & Rebecca J. Goldburg & Jurgenne H. Primavera & Nils Kautsky & Malcolm C. M. Beveridge & Jason Clay & Carl Folke & Jane Lubchenco & Harold Mooney & Max Troell, 2000. "Effect of aquaculture on world fish supplies," Nature, Nature, vol. 405(6790), pages 1017-1024, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:mse:cesdoc:13002r is not listed on IDEAS
    2. Nesar Ahmed & Shirley Thompson & Giovanni M. Turchini, 2020. "Organic aquaculture productivity, environmental sustainability, and food security: insights from organic agriculture," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1253-1267, December.
    3. Hughes, Conchúr & King, Jonathan W., 2023. "Habitat suitability modelling for an integrated multi-trophic aquaculture (IMTA) system along Europe's Atlantic coast," Ecological Modelling, Elsevier, vol. 484(C).
    4. József Popp & László Váradi & Emese Békefi & András Péteri & Gergő Gyalog & Zoltán Lakner & Judit Oláh, 2018. "Evolution of Integrated Open Aquaculture Systems in Hungary: Results from a Case Study," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    5. Thaler, S. & Zessner, M. & Weigl, M. & Rechberger, H. & Schilling, K. & Kroiss, H., 2015. "Possible implications of dietary changes on nutrient fluxes, environment and land use in Austria," Agricultural Systems, Elsevier, vol. 136(C), pages 14-29.
    6. Prein, M., 2002. "Integration of aquaculture into crop-animal systems in Asia," Agricultural Systems, Elsevier, vol. 71(1-2), pages 127-146.
    7. Awwal Bamanga & Nnamdi Henry Amaeze & Bader Al-Anzi, 2019. "Comparative Investigation of Total, Recoverable and Bioavailable Fractions of Sediment Metals and Metalloids in the Lagos Harbour and Lagoon System," Sustainability, MDPI, vol. 11(16), pages 1-23, August.
    8. Lee, Min-Kyu & Yoo, Seung-Hoon, 2014. "The role of the capture fisheries and aquaculture sectors in the Korean national economy: An input–output analysis," Marine Policy, Elsevier, vol. 44(C), pages 448-456.
    9. Felipe Lourenço & Ricardo Calado & Isabel Medina & Olga M. C. C. Ameixa, 2022. "The Potential Impacts by the Invasion of Insects Reared to Feed Livestock and Pet Animals in Europe and Other Regions: A Critical Review," Sustainability, MDPI, vol. 14(10), pages 1-29, May.
    10. Teresa R. Johnson & Kate Beard & Damian C. Brady & Carrie J. Byron & Caitlin Cleaver & Kevin Duffy & Nicholas Keeney & Melissa Kimble & Molly Miller & Shane Moeykens & Mario Teisl & G. Peter van Walsu, 2019. "A Social-Ecological System Framework for Marine Aquaculture Research," Sustainability, MDPI, vol. 11(9), pages 1-20, April.
    11. Ren, Jeffrey S. & Ross, Alex H. & Hadfield, Mark G. & Hayden, Barbara J., 2010. "An ecosystem model for estimating potential shellfish culture production in sheltered coastal waters," Ecological Modelling, Elsevier, vol. 221(3), pages 527-539.
    12. Mullon, C. & Steinmetz, F. & Merino, G. & Fernandes, J.A. & Cheung, W.W.L. & Butenschön, M. & Barange, M., 2016. "Quantitative pathways for Northeast Atlantic fisheries based on climate, ecological–economic and governance modelling scenarios," Ecological Modelling, Elsevier, vol. 320(C), pages 273-291.
    13. Jennifer Jacquet & David Frank & Christopher Schlottmann, 2013. "Asymmetrical Contributions to the Tragedy of the Commons and Some Implications for Conservation," Sustainability, MDPI, vol. 5(3), pages 1-13, March.
    14. Ling Cao & Benjamin S. Halpern & Max Troell & Rebecca Short & Cong Zeng & Ziyu Jiang & Yue Liu & Chengxuan Zou & Chunyu Liu & Shurong Liu & Xiangwei Liu & William W. L. Cheung & Richard S. Cottrell & , 2023. "Vulnerability of blue foods to human-induced environmental change," Nature Sustainability, Nature, vol. 6(10), pages 1186-1198, October.
    15. Heimann, Tobias & Delzeit, Ruth, 2020. "Land for Fish: Does plant-based fodder demand of aquaculture production affect agricultural markets?," Conference papers 330207, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    16. Carolyn Fischer & Atle G. Guttormsen & Martin D. Smith, 2017. "Disease Risk and Market Structure in Salmon Aquaculture," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 1-29, April.
    17. Carlo Bibbiani & Alessandro Campiotti & Luca Incrocci & Alberto Pardossi & Baldassarre Fronte & Corinna Viola, 2016. "Aquaponic as sustainable innovation for food production," RIVISTA DI STUDI SULLA SOSTENIBILITA', FrancoAngeli Editore, vol. 2016(2), pages 249-258.
    18. F. Dahdouh-Guebas & T. Zetterström & P. Rönnbäck & M. Troell & A. Wickramasinghe & N. Koedam, 2002. "Recent Changes in Land-Use in the Pambala–Chilaw Lagoon Complex (Sri Lanka) Investigated Using Remote Sensing and GIS: Conservation of Mangroves vs. Development of Shrimp Farming," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 4(2), pages 185-200, June.
    19. Tamiru Lemi, 2019. "Threats and Opportunities of Central Ethiopia Rift Valley Lakes," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 22(2), pages 52-62, October.
    20. Williams, Meryl J., 2004. "World Fish Supplies, Outlook and Food Security," 2004: Fish, Aquaculture and Food Security: Sustaining Fish as a Food Supply, 11 August 2004 124062, Crawford Fund.
    21. Emmanuel A. Frimpong & Yaw B. Ansah & Stephen Amisah & Daniel Adjei-Boateng & Nelson W. Agbo & Hillary Egna, 2014. "Effects of Two Environmental Best Management Practices on Pond Water and Effluent Quality and Growth of Nile Tilapia, Oreochromis niloticus," Sustainability, MDPI, vol. 6(2), pages 1-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:993-:d:1025946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.