IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13841-d1241938.html
   My bibliography  Save this article

Analysing the Sustainability of the Production of Solid Recovered Fuel from Screening Waste

Author

Listed:
  • Juan Jesús De la Torre Bayo

    (Department of Civil Engineering, University of Granada, 18071 Granada, Spain)

  • Montserrat Zamorano Toro

    (Department of Civil Engineering, University of Granada, 18071 Granada, Spain)

  • Luz Marina Ruiz

    (Department of Civil Engineering, University of Granada, 18071 Granada, Spain)

  • Juan Carlos Torres Rojo

    (Emasagra S.A., 18071 Granada, Spain)

  • Jaime Martín Pascual

    (Department of Civil Engineering, University of Granada, 18071 Granada, Spain)

Abstract

The development in wastewater management has caused a shift towards a circular model that prioritises energy generation and waste reduction. Traditional unitary processes in wastewater treatment, such as screening, only allow for landfill disposal without energy recovery. However, producing solid recovered fuel ( SRF ) from waste screening may be a possibility. The economic and environmental viability of this alternative, as a fundamental requirement for its implementation at industrial level, was assessed through a multi-scenario analysis using Monte Carlo simulation. The cost and benefit streams were determined based on the financial net present value ( NPV f ) and the social net present value ( NPV s ), including monetised CO 2 emissions generated. The results showed that waste drying costs were found to be the most significant ones, with thermal drying being more financially advantageous than solar drying. The densification of SRF raises the costs by 7.88 to 8.48%, but its use as fuel would likely be profitable due to the economic benefits it provides. Current landfill disposal practices, which have an NPV s of −1052.60 EUR/t, are not a feasible, particularly when compared to the other SRF production scenarios, with maximum NPV s of −53.91 EUR/t. SRF production without densification using solar drying is the most acceptable scenario with the lowest NPV s (38.39 EUR/t).

Suggested Citation

  • Juan Jesús De la Torre Bayo & Montserrat Zamorano Toro & Luz Marina Ruiz & Juan Carlos Torres Rojo & Jaime Martín Pascual, 2023. "Analysing the Sustainability of the Production of Solid Recovered Fuel from Screening Waste," Sustainability, MDPI, vol. 15(18), pages 1-15, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13841-:d:1241938
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13841/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13841/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mobini, Mahdi & Sowlati, Taraneh & Sokhansanj, Shahab, 2013. "A simulation model for the design and analysis of wood pellet supply chains," Applied Energy, Elsevier, vol. 111(C), pages 1239-1249.
    2. Eleni P. Tsiakiri & Aikaterini Mpougali & Ioannis Lemonidis & Christos A. Tzenos & Sotirios D. Kalamaras & Thomas A. Kotsopoulos & Petros Samaras, 2021. "Estimation of Energy Recovery Potential from Primary Residues of Four Municipal Wastewater Treatment Plants," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    3. Dinko Đurđević & Paolo Blecich & Željko Jurić, 2019. "Energy Recovery from Sewage Sludge: The Case Study of Croatia," Energies, MDPI, vol. 12(10), pages 1-19, May.
    4. Chavando, José Antonio Mayoral & Silva, Valter Bruno & Tarelho, Luís A.C. & Cardoso, João Sousa & Eusébio, Daniela, 2022. "Snapshot review of refuse-derived fuels," Utilities Policy, Elsevier, vol. 74(C).
    5. Bennamoun, Lyes & Arlabosse, Patricia & Léonard, Angélique, 2013. "Review on fundamental aspect of application of drying process to wastewater sludge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 29-43.
    6. Konstadinos Abeliotis & Christina Chroni & Katia Lasaridi & Evangelos Terzis & Fenia Galliou & Thrassyvoulos Manios, 2022. "Environmental Impact Assessment of a Solar Drying Unit for the Transformation of Food Waste into Animal Feed," Resources, MDPI, vol. 11(12), pages 1-11, December.
    7. Nixon, J.D. & Dey, P.K. & Ghosh, S.K. & Davies, P.A., 2013. "Evaluation of options for energy recovery from municipal solid waste in India using the hierarchical analytical network process," Energy, Elsevier, vol. 59(C), pages 215-223.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariusz Tańczuk & Wojciech Kostowski, 2021. "Technical, Energetic and Economic Optimization Analysis of Selection of Heat Source for Municipal Sewage Sludge Dryer," Energies, MDPI, vol. 14(2), pages 1-16, January.
    2. Que Nguyen Ho & Giridhar Babu Anam & Jaein Kim & Somin Park & Tae-U Lee & Jae-Young Jeon & Yun-Young Choi & Young-Ho Ahn & Byung Joon Lee, 2022. "Fate of Sulfate in Municipal Wastewater Treatment Plants and Its Effect on Sludge Recycling as a Fuel Source," Sustainability, MDPI, vol. 15(1), pages 1-14, December.
    3. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    4. Kumar, Aman & Singh, Ekta & Mishra, Rahul & Lo, Shang Lien & Kumar, Sunil, 2023. "Global trends in municipal solid waste treatment technologies through the lens of sustainable energy development opportunity," Energy, Elsevier, vol. 275(C).
    5. Giuseppe Campo & Alberto Cerutti & Claudio Lastella & Aldo Leo & Deborah Panepinto & Mariachiara Zanetti & Barbara Ruffino, 2021. "Production and Destination of Sewage Sludge in the Piemonte Region (Italy): The Results of a Survey for a Future Sustainable Management," IJERPH, MDPI, vol. 18(7), pages 1-13, March.
    6. Schipfer, Fabian & Kranzl, Lukas, 2019. "Techno-economic evaluation of biomass-to-end-use chains based on densified bioenergy carriers (dBECs)," Applied Energy, Elsevier, vol. 239(C), pages 715-724.
    7. Christos A. Tzenos & Sotirios D. Kalamaras & Eleni-Anna Economou & George Em. Romanos & Charitomeni M. Veziri & Anastasios Mitsopoulos & Georgios C. Menexes & Themistoklis Sfetsas & Thomas A. Kotsopou, 2023. "The Multifunctional Effect of Porous Additives on the Alleviation of Ammonia and Sulfate Co-Inhibition in Anaerobic Digestion," Sustainability, MDPI, vol. 15(13), pages 1-17, June.
    8. Carotenuto, Alberto & Di Fraia, Simona & Massarotti, Nicola & Sobek, Szymon & Uddin, M. Rakib & Vanoli, Laura & Werle, Sebastian, 2023. "Predictive modeling for energy recovery from sewage sludge gasification," Energy, Elsevier, vol. 263(PB).
    9. Eriksson, Anders & Eliasson, Lars & Sikanen, Lauri & Hansson, Per-Anders & Jirjis, Raida, 2017. "Evaluation of delivery strategies for forest fuels applying a model for Weather-driven Analysis of Forest Fuel Systems (WAFFS)," Applied Energy, Elsevier, vol. 188(C), pages 420-430.
    10. Emily Hope & Bruno Gagnon & Vanja Avdić, 2020. "Assessment of the Impact of Climate Change Policies on the Market for Forest Industrial Residues," Sustainability, MDPI, vol. 12(5), pages 1-20, February.
    11. Milutinović, Biljana & Stefanović, Gordana & Dassisti, Michele & Marković, Danijel & Vučković, Goran, 2014. "Multi-criteria analysis as a tool for sustainability assessment of a waste management model," Energy, Elsevier, vol. 74(C), pages 190-201.
    12. Toscano, G. & Duca, D. & Amato, A. & Pizzi, A., 2014. "Emission from realistic utilization of wood pellet stove," Energy, Elsevier, vol. 68(C), pages 644-650.
    13. Bujak, Janusz Wojciech, 2015. "Production of waste energy and heat in hospital facilities," Energy, Elsevier, vol. 91(C), pages 350-362.
    14. Vitale, Ignacio & Dondo, Rodolfo G. & González, Matías & Cóccola, Mariana E., 2022. "Modelling and optimization of material flows in the wood pellet supply chain," Applied Energy, Elsevier, vol. 313(C).
    15. Zhaoyuan He & Paul Turner, 2021. "A Systematic Review on Technologies and Industry 4.0 in the Forest Supply Chain: A Framework Identifying Challenges and Opportunities," Logistics, MDPI, vol. 5(4), pages 1-22, December.
    16. Di Fraia, S. & Massarotti, N. & Vanoli, L. & Costa, M., 2016. "Thermo-economic analysis of a novel cogeneration system for sewage sludge treatment," Energy, Elsevier, vol. 115(P3), pages 1560-1571.
    17. Yun, Huimin & Clift, Roland & Bi, Xiaotao, 2020. "Process simulation, techno-economic evaluation and market analysis of supply chains for torrefied wood pellets from British Columbia: Impacts of plant configuration and distance to market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    18. Sandylove Afrane & Jeffrey Dankwa Ampah & Ephraim Bonah Agyekum & Prince Oppong Amoh & Abdulfatah Abdu Yusuf & Islam Md Rizwanul Fattah & Ebenezer Agbozo & Elmazeg Elgamli & Mokhtar Shouran & Guozhu M, 2022. "Integrated AHP-TOPSIS under a Fuzzy Environment for the Selection of Waste-To-Energy Technologies in Ghana: A Performance Analysis and Socio-Enviro-Economic Feasibility Study," IJERPH, MDPI, vol. 19(14), pages 1-31, July.
    19. Marzena Smol, 2023. "Circular Economy in Wastewater Treatment Plant—Water, Energy and Raw Materials Recovery," Energies, MDPI, vol. 16(9), pages 1-18, May.
    20. Ioannis Lemonidis & Dimitra C. Banti & Christos A. Tzenos & Sotirios D. Kalamaras & Thomas A. Kotsopoulos & Petros Samaras, 2022. "Energy Valorization of Fine Screenings from a Municipal Wastewater Treatment Plant," Energies, MDPI, vol. 15(21), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13841-:d:1241938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.