IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i15p11477-d1201577.html
   My bibliography  Save this article

Assessing the Suitability of Sediment Soil to Be Reused by Different Soil Treatments for Forest Agriculture

Author

Listed:
  • Yeonggeun Song

    (Department of Forest Environment Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
    These authors contributed equally to this work.)

  • Sukwoo Kim

    (Division of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
    These authors contributed equally to this work.)

  • Haeun Koo

    (Department of Crops and Forestry, Korea National University of Agriculture and Fisheries, Jeonju 54874, Republic of Korea)

  • Hyeonhwa Kim

    (Department of Crops and Forestry, Korea National University of Agriculture and Fisheries, Jeonju 54874, Republic of Korea)

  • Kidae Kim

    (Department of Forestry and Environmental Systems, Kangwon National University, Chuncheon 24341, Republic of Korea)

  • Jaeuk Lee

    (Geologic Hazards Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea)

  • Sujin Jang

    (Division of Decentralization, Gangwon Institute, Chuncheon 24461, Republic of Korea)

  • Kyeong Cheol Lee

    (Department of Crops and Forestry, Korea National University of Agriculture and Fisheries, Jeonju 54874, Republic of Korea)

Abstract

In order to determine the suitability of reusing the sediment deposited in the upper part of the dam as soil for growing forest products, a total of eight treatment plots were formed by mixing cultivated soil, compost, and biochar with the sediment in a volume ratio. Generally, the soil fertility of SS100 was relatively lower than that of CS, with Av. P 2 O 5 being only 22%. SS70 and SS50 increased soil physicochemical properties including OM, exchangeable cations, CEC, and BS by 1.1–2.9 times more than SS100, thus, A. scaber Thunb. treated in SS70 and SS50 showed increased photosynthetic parameters including A, V cmax , J max , and the growth characteristics, especially in the aboveground part, were 20% and 31% higher than the SS100, respectively. Furthermore, A. scaber in CS, SS50, Bc10, and Comp had higher PI abs , DFI abs , and SFI abs while maintaining lower V K /V J after 10 days of drought stress, Comp and Bc10, in particular, had a high Y(NPQ) and a low Y(NO). Bc5 and Bc10, revealed no discernible differences in soil physicochemical properties, nonetheless, A. scaber in Bc10 demonstrated relatively high drought tolerance. Overall, CS, SS50, and Comp had relatively well-balanced plant growth, and drought tolerance was found to be higher in CS, Comp, SS50, and Bc10, which is thought to have higher water-holding capacity and soil fertility. As a result, if appropriate treatment methods are established, such as mixing sediment soil with cultivated soil at a one-to-one ratio or adding compost, increase the public value of forests by promoting activities such as watershed conservation, soil runoff prevention, and reducing the financial burden associated with sustainable forestry management and SS50 is recommended as the most cost-effective method.

Suggested Citation

  • Yeonggeun Song & Sukwoo Kim & Haeun Koo & Hyeonhwa Kim & Kidae Kim & Jaeuk Lee & Sujin Jang & Kyeong Cheol Lee, 2023. "Assessing the Suitability of Sediment Soil to Be Reused by Different Soil Treatments for Forest Agriculture," Sustainability, MDPI, vol. 15(15), pages 1-18, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:11477-:d:1201577
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/15/11477/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/15/11477/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alistair M. Hetherington & F. Ian Woodward, 2003. "The role of stomata in sensing and driving environmental change," Nature, Nature, vol. 424(6951), pages 901-908, August.
    2. Ian J. Wright & Peter B. Reich & Mark Westoby & David D. Ackerly & Zdravko Baruch & Frans Bongers & Jeannine Cavender-Bares & Terry Chapin & Johannes H. C. Cornelissen & Matthias Diemer & Jaume Flexas, 2004. "The worldwide leaf economics spectrum," Nature, Nature, vol. 428(6985), pages 821-827, April.
    3. Lee, Jongyeol & Lim, Chul-Hee & Kim, Gang Sun & Markandya, Anil & Chowdhury, Sarwat & Kim, Sea Jin & Lee, Woo-Kyun & Son, Yowhan, 2018. "Economic viability of the national-scale forestation program: The case of success in the Republic of Korea," Ecosystem Services, Elsevier, vol. 29(PA), pages 40-46.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiyu Chen & Jing Gao & Qi Wang & Xianming Tan & Shenglan Li & Ping Chen & Taiwen Yong & Xiaochun Wang & Yushan Wu & Feng Yang & Wenyu Yang, 2022. "Blue-Light-Dependent Stomatal Density and Specific Leaf Weight Coordinate to Promote Gas Exchange of Soybean Leaves," Agriculture, MDPI, vol. 13(1), pages 1-13, December.
    2. Maria Wanic & Mariola Parzonka, 2023. "Assessing the Role of Crop Rotation in Shaping Foliage Characteristics and Leaf Gas Exchange Parameters for Winter Wheat," Agriculture, MDPI, vol. 13(5), pages 1-20, April.
    3. Xingyun Liang & Defu Wang & Qing Ye & Jinmeng Zhang & Mengyun Liu & Hui Liu & Kailiang Yu & Yujie Wang & Enqing Hou & Buqing Zhong & Long Xu & Tong Lv & Shouzhang Peng & Haibo Lu & Pierre Sicard & Ale, 2023. "Stomatal responses of terrestrial plants to global change," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Wang, Lunche & Kisi, Ozgur & Zounemat-Kermani, Mohammad & Hu, Bo & Gong, Wei, 2016. "Modeling and comparison of hourly photosynthetically active radiation in different ecosystems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 436-453.
    5. Sato, Hisashi & Itoh, Akihiko & Kohyama, Takashi, 2007. "SEIB–DGVM: A new Dynamic Global Vegetation Model using a spatially explicit individual-based approach," Ecological Modelling, Elsevier, vol. 200(3), pages 279-307.
    6. Li, Haotian & Li, Lu & Liu, Na & Chen, Suying & Shao, Liwei & Sekiya, Nobuhito & Zhang, Xiying, 2022. "Root efficiency and water use regulation relating to rooting depth of winter wheat," Agricultural Water Management, Elsevier, vol. 269(C).
    7. Lindh, Magnus & Manzoni, Stefano, 2021. "Plant evolution along the ‘fast–slow’ growth economics spectrum under altered precipitation regimes," Ecological Modelling, Elsevier, vol. 448(C).
    8. Mariana García Criado & Isla H. Myers-Smith & Anne D. Bjorkman & Signe Normand & Anne Blach-Overgaard & Haydn J. D. Thomas & Anu Eskelinen & Konsta Happonen & Juha M. Alatalo & Alba Anadon-Rosell & Is, 2023. "Plant traits poorly predict winner and loser shrub species in a warming tundra biome," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    9. Armando Hernández Pérez & Juana Cruz García Santiago & Valentín Robledo Torres & Alonso Méndez López & Alberto Sandoval Rangel & Neymar Camposeco Montejo, 2021. "Nitrate/ammonium ratio effect on the growth, yield and foliar anatomy of grafted tomato plants," Horticultural Science, Czech Academy of Agricultural Sciences, vol. 48(2), pages 80-89.
    10. Lee, Jongyeol & Kim, Hyungsub & Song, Cholho & Kim, Gang Sun & Lee, Woo-Kyun & Son, Yowhan, 2020. "Determining economically viable forest management option with consideration of ecosystem services in Korea: A strategy after successful national forestation," Ecosystem Services, Elsevier, vol. 41(C).
    11. Siddhartha Shankar Bhattacharyya & Pedro Mondaca & Oloka Shushupti & Sharjeel Ashfaq, 2023. "Interplay between Plant Functional Traits and Soil Carbon Sequestration under Ambient and Elevated CO 2 Levels," Sustainability, MDPI, vol. 15(9), pages 1-20, May.
    12. Liting Zheng & Kathryn E. Barry & Nathaly R. Guerrero-Ramírez & Dylan Craven & Peter B. Reich & Kris Verheyen & Michael Scherer-Lorenzen & Nico Eisenhauer & Nadia Barsoum & Jürgen Bauhus & Helge Bruel, 2024. "Effects of plant diversity on productivity strengthen over time due to trait-dependent shifts in species overyielding," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Pan, Quan & Wen, Zhi & Wu, Tong & Zheng, Tianchen & Yang, Yanzheng & Li, Ruonan & Zheng, Hua, 2022. "Trade-offs and synergies of forest ecosystem services from the perspective of plant functional traits: A systematic review," Ecosystem Services, Elsevier, vol. 58(C).
    14. Chen, Haodong & Ma, Zhihui & Liu, Xianliang & Qiao, Kaiming & Xie, Longlong & Li, Zhenxing & Shen, Jun & Dai, Wei & Ou, Zhiqiang & Yibole, Hargen & Tegus, Ojiyed & Taskaev, Sergey V. & Chu, Ke & Long,, 2022. "Evaluation of thermomagnetic generation performance of classic magnetocaloric materials for harvesting low-grade waste heat," Applied Energy, Elsevier, vol. 306(PA).
    15. Aicha Nait Douch & Laila Boukhalef & Abdelhafed El Asbahani & Ali A. Al-Namazi & Khadija El Mehrach & Laila Bouqbis & Mourad Touaf & Fatima Ain-Lhout, 2022. "Photosynthetic Behavior of Argania spinosa (L.) Skeels Induced under Grazed and Ungrazed Conditions," Sustainability, MDPI, vol. 14(19), pages 1-12, September.
    16. Saashia Fuji & Shota Yamauchi & Naoyuki Sugiyama & Takayuki Kohchi & Ryuichi Nishihama & Ken-ichiro Shimazaki & Atsushi Takemiya, 2024. "Light-induced stomatal opening requires phosphorylation of the C-terminal autoinhibitory domain of plasma membrane H+-ATPase," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Simon Taugourdeau & Mathilde Dionisi & Mylène Lascoste & Matthieu Lesnoff & Jean Marie Capron & Fréderic Borne & Philippe Borianne & Lionel Julien, 2022. "A First Attempt to Combine NIRS and Plenoptic Cameras for the Assessment of Grasslands Functional Diversity and Species Composition," Agriculture, MDPI, vol. 12(5), pages 1-16, May.
    18. Daniel S. Maynard & Lalasia Bialic-Murphy & Constantin M. Zohner & Colin Averill & Johan Hoogen & Haozhi Ma & Lidong Mo & Gabriel Reuben Smith & Alicia T. R. Acosta & Isabelle Aubin & Erika Berenguer , 2022. "Global relationships in tree functional traits," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    19. Yawen Li & Yinan Ding & Lili Qu & Xinru Li & Qinxuan Lai & Pingxia Zhao & Yongxiang Gao & Chengbin Xiang & Chunlei Cang & Xin Liu & Linfeng Sun, 2022. "Structure of the Arabidopsis guard cell anion channel SLAC1 suggests activation mechanism by phosphorylation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Tessa Camenzind & Carlos A. Aguilar-Trigueros & Stefan Hempel & Anika Lehmann & Milos Bielcik & Diana R. Andrade-Linares & Joana Bergmann & Jeane Cruz & Jessie Gawronski & Polina Golubeva & Heike Hasl, 2024. "Towards establishing a fungal economics spectrum in soil saprobic fungi," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:11477-:d:1201577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.