IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i14p10818-d1190782.html
   My bibliography  Save this article

Does a Cross-Correlation of Economic Policy Uncertainty with China’s Carbon Market Really Exist? A Perspective on Fractal Market Hypothesis

Author

Listed:
  • Yuchen An

    (School of Economics and Management, Southwest University of Science and Technology, Mianyang 621010, China)

  • Kunliang Jiang

    (School of Economics and Management, Southwest University of Science and Technology, Mianyang 621010, China)

  • Jiashan Song

    (School of Economics and Management, Southwest University of Science and Technology, Mianyang 621010, China)

Abstract

Under the efficient market hypothesis (EMH), part of the literature ignores the characteristics of carbon markets. Based on the fractal market hypothesis (FMH), using the MF-DCCA method, this empirical study complements related research. We studied the non-linear multifractal correlation between carbon price fluctuations and China’s economic policy uncertainty (CNEPU) in Shenzhen, Beijing, Tianjin, and the national carbon market. The results show the following: (1) There is no linear correlation between price volatility and CNEPU in all carbon markets. (2) In the national carbon market, the correlation linkage between price fluctuation and CNEPU has not yet formed. (3) In the three regional carbon markets of Shenzhen, Beijing, and Tianjin, the long-range correlations exist with anti-persistence multifractal characteristics, which means that an increase in CNEPU will reduce price fluctuations. (4) After dividing the time scale into long-term and short-term, we found that it does not change the multifractal characteristics but it does change the fractal intensity. Finally, some suggestions are given to policymakers and carbon finance investors.

Suggested Citation

  • Yuchen An & Kunliang Jiang & Jiashan Song, 2023. "Does a Cross-Correlation of Economic Policy Uncertainty with China’s Carbon Market Really Exist? A Perspective on Fractal Market Hypothesis," Sustainability, MDPI, vol. 15(14), pages 1-18, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:10818-:d:1190782
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/14/10818/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/14/10818/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huang, Yun & Luk, Paul, 2020. "Measuring economic policy uncertainty in China," China Economic Review, Elsevier, vol. 59(C).
    2. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    3. Maha Alandejani & Habiba Al-Shaer, 2023. "Macro Uncertainty Impacts on ESG Performance and Carbon Emission Reduction Targets," Sustainability, MDPI, vol. 15(5), pages 1-15, February.
    4. Wei-Xing Zhou, 2008. "Multifractal detrended cross-correlation analysis for two nonstationary signals," Papers 0803.2773, arXiv.org.
    5. S. Shadkhoo & G. R. Jafari, 2009. "Multifractal detrended cross-correlation analysis of temporal and spatial seismic data," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 72(4), pages 679-683, December.
    6. Mohammad Anamul Haque & Zhang Biqiong & Muhammad Usman Arshad & Nazia Yasmin, 2022. "Role of uncertainty for FDI inflow: Panel econometric analysis of selected high-income nations," Cogent Economics & Finance, Taylor & Francis Journals, vol. 10(1), pages 2156677-215, December.
    7. Ruwei Zhao & Lei Xie, 2021. "Economic Policy Uncertainty and Local Carbon Emission Trading: A Multifractal Analysis from US and Guangdong," Complexity, Hindawi, vol. 2021, pages 1-10, July.
    8. Wang, Yudong & Wei, Yu & Wu, Chongfeng, 2011. "Analysis of the efficiency and multifractality of gold markets based on multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(5), pages 817-827.
    9. Nusair, Salah A. & Al-Khasawneh, Jamal A., 2022. "Impact of economic policy uncertainty on the stock markets of the G7 Countries:A nonlinear ARDL approach," The Journal of Economic Asymmetries, Elsevier, vol. 26(C).
    10. Duan, Kun & Ren, Xiaohang & Shi, Yukun & Mishra, Tapas & Yan, Cheng, 2021. "The marginal impacts of energy prices on carbon price variations: Evidence from a quantile-on-quantile approach," Energy Economics, Elsevier, vol. 95(C).
    11. Cajueiro, Daniel O. & Tabak, Benjamin M., 2004. "Evidence of long range dependence in Asian equity markets: the role of liquidity and market restrictions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 342(3), pages 656-664.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruan, Qingsong & Jiang, Wei & Ma, Guofeng, 2016. "Cross-correlations between price and volume in Chinese gold markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 10-22.
    2. Li, Wei & Lu, Xinsheng & Ren, Yongping & Zhou, Ying, 2018. "Dynamic relationship between RMB exchange rate index and stock market liquidity: A new perspective based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 726-739.
    3. Zhuang, Xiaoyang & Wei, Yu & Zhang, Bangzheng, 2014. "Multifractal detrended cross-correlation analysis of carbon and crude oil markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 113-125.
    4. Zhuang, Xiaoyang & Wei, Yu & Ma, Feng, 2015. "Multifractality, efficiency analysis of Chinese stock market and its cross-correlation with WTI crude oil price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 101-113.
    5. Li, Jianfeng & Lu, Xinsheng & Zhou, Ying, 2016. "Cross-correlations between crude oil and exchange markets for selected oil rich economies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 131-143.
    6. Stosic, Dusan & Stosic, Darko & de Mattos Neto, Paulo S.G. & Stosic, Tatijana, 2019. "Multifractal characterization of Brazilian market sectors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 956-964.
    7. Li, Shuping & Lu, Xinsheng & Li, Jianfeng, 2021. "Cross-correlations between the P2P interest rate, Shibor and treasury yields," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    8. Ruan, Qingsong & Huang, Ying & Jiang, Wei, 2016. "The exceedance and cross-correlations between the gold spot and futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 139-151.
    9. Dutta, Srimonti & Ghosh, Dipak & Chatterjee, Sucharita, 2016. "Multifractal detrended Cross Correlation Analysis of Foreign Exchange and SENSEX fluctuation in Indian perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 188-201.
    10. Sun, Xinxin & Lu, Xinsheng & Yue, Gongzheng & Li, Jianfeng, 2017. "Cross-correlations between the US monetary policy, US dollar index and crude oil market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 326-344.
    11. Lu, Xinsheng & Sun, Xinxin & Ge, Jintian, 2017. "Dynamic relationship between Japanese Yen exchange rates and market anxiety: A new perspective based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 144-161.
    12. Li, Shuping & Lu, Xinsheng & Liu, Xinghua, 2020. "Dynamic relationship between Chinese RMB exchange rate index and market anxiety: A new perspective based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    13. Shen, Chen-hua & Li, Chao-ling & Si, Ya-li, 2015. "A detrended cross-correlation analysis of meteorological and API data in Nanjing, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 417-428.
    14. Gajardo, Gabriel & Kristjanpoller, Werner, 2017. "Asymmetric multifractal cross-correlations and time varying features between Latin-American stock market indices and crude oil market," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 121-128.
    15. Lu, Xinsheng & Li, Jianfeng & Zhou, Ying & Qian, Yubo, 2017. "Cross-correlations between RMB exchange rate and international commodity markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 168-182.
    16. Guo, Yaoqi & Yu, Zhuling & Yu, Chenxi & Cheng, Hui & Chen, Weixun & Zhang, Hongwei, 2021. "Asymmetric multifractal features of the price–volume correlation in China’s gold futures market based on MF-ADCCA," Research in International Business and Finance, Elsevier, vol. 58(C).
    17. Ma, Feng & Wei, Yu & Huang, Dengshi, 2013. "Multifractal detrended cross-correlation analysis between the Chinese stock market and surrounding stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(7), pages 1659-1670.
    18. Yingce Yang & Junjie Guo & Ruihong He, 2023. "The Asymmetric Impact of the Oil Price and Disaggregate Shocks on Economic Policy Uncertainty: Evidence From China," SAGE Open, , vol. 13(2), pages 21582440231, June.
    19. Fang, Sheng & Lu, Xinsheng & Li, Jianfeng & Qu, Ling, 2018. "Multifractal detrended cross-correlation analysis of carbon emission allowance and stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 551-566.
    20. Duan, Kun & Zhao, Yanqi & Urquhart, Andrew & Huang, Yingying, 2023. "Do clean and dirty cryptocurrencies connect with financial assets differently? The role of economic policy uncertainty," Energy Economics, Elsevier, vol. 127(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:10818-:d:1190782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.