IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i11p8949-d1162102.html
   My bibliography  Save this article

Spatiotemporal Changes in the Supply and Demand of Ecosystem Services in the Kaidu-Kongque River Basin, China

Author

Listed:
  • Yujiang Yan

    (College of Economics and Management, Xinjiang Agricultural University, Urumqi 830052, China)

  • Jiangui Li

    (College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China)

  • Junli Li

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China)

  • Teng Jiang

    (Xinjiang Academy of Forestry Sciences, Urumqi 830018, China)

Abstract

The assessment of ecosystem service (ES) supply and demand is crucial for the sustainable development of dryland drainage basins. The natural ecosystems in the Kaidu-Kongque River Basin have experienced severe ecological degradation in recent years, and the ES supply and demand were contradicted due to water scarcity and excessive water utilization. In this paper, the supply–demand of five key ecosystem services were evaluated, and their spatial matching was also analyzed to provide total insights. The services assessed were food supply, water yield, carbon sequestration, habitat quality, and windbreak and sand fixation. We utilized various models, including InVEST, RWEQ, and GeoDa, to quantify and analyze the spatial and temporal patterns of ecosystem service supply and demand between 1990 and 2020. Our findings indicate that the supply and demand for all ecosystem services in the basin have increased over the last 30 years. However, the spatial distribution of supply and demand for each ecosystem service is not completely consistent. Except for windbreak and sand fixation, where supply exceeds demand, there is a spatial mismatch between supply and demand for each service. Furthermore, we observed a positive and synergistic correlation between the supply and demand of each ecosystem service, with water yield services being the dominant and limiting factor. The spatial correlation between the supply and demand of ecosystem services was dominated by “low supply—low demand”, “high supply—high demand” spatial matching, and “low supply—high demand” mismatch, which could explain the variation in water yield from upstream to downstream. Based on our findings, we recommend policies and recommendations for ecological conservation and sustainable development in the Kaidu-Kongque River Basin. The ES supply and demand will become more reliable by increasing water supplies in the middle and lower reaches of the basin. Our results provide illumination for the maintenance and sustainability of ecosystem services in arid regions.

Suggested Citation

  • Yujiang Yan & Jiangui Li & Junli Li & Teng Jiang, 2023. "Spatiotemporal Changes in the Supply and Demand of Ecosystem Services in the Kaidu-Kongque River Basin, China," Sustainability, MDPI, vol. 15(11), pages 1-17, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8949-:d:1162102
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/11/8949/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/11/8949/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Larondelle, Neele & Lauf, Steffen, 2016. "Balancing demand and supply of multiple urban ecosystem services on different spatial scales," Ecosystem Services, Elsevier, vol. 22(PA), pages 18-31.
    2. Lorilla, Roxanne Suzette & Kalogirou, Stamatis & Poirazidis, Konstantinos & Kefalas, George, 2019. "Identifying spatial mismatches between the supply and demand of ecosystem services to achieve a sustainable management regime in the Ionian Islands (Western Greece)," Land Use Policy, Elsevier, vol. 88(C).
    3. Schirpke, Uta & Meisch, Claude & Marsoner, Thomas & Tappeiner, Ulrike, 2018. "Revealing spatial and temporal patterns of outdoor recreation in the European Alps and their surroundings," Ecosystem Services, Elsevier, vol. 31(PC), pages 336-350.
    4. Cui, Fengqi & Tang, Haiping & Zhang, Qin & Wang, Bojie & Dai, Luwei, 2019. "Integrating ecosystem services supply and demand into optimized management at different scales: A case study in Hulunbuir, China," Ecosystem Services, Elsevier, vol. 39(C).
    5. Wolff, S. & Schulp, C.J.E. & Kastner, T & Verburg, P.H., 2017. "Quantifying Spatial Variation in Ecosystem Services Demand: A Global Mapping Approach," Ecological Economics, Elsevier, vol. 136(C), pages 14-29.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghasemi, Mitra & Charrahy, Zabih & González-García, Alberto, 2023. "Mapping cultural ecosystem services provision: An integrated model of recreation and ecotourism opportunities," Land Use Policy, Elsevier, vol. 131(C).
    2. Yujiang Yan & Jiangui Li & Junli Li & Teng Jiang, 2023. "Spatio-Temporal Measurement and Driving Factor Analysis of Ecosystem Service Trade-Offs and Synergy in the Kaidu–Kongque River Basin, Xinjiang, China," Sustainability, MDPI, vol. 15(16), pages 1-14, August.
    3. Wei Shi & Fuwei Qiao & Liang Zhou, 2021. "Identification of Ecological Risk Zoning on Qinghai-Tibet Plateau from the Perspective of Ecosystem Service Supply and Demand," Sustainability, MDPI, vol. 13(10), pages 1-17, May.
    4. Tianlin Zhai & Jing Wang & Ying Fang & Longyang Huang & Jingjing Liu & Chenchen Zhao, 2021. "Integrating Ecosystem Services Supply, Demand and Flow in Ecological Compensation: A Case Study of Carbon Sequestration Services," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    5. Wenjing Wang & Tong Wu & Yuanzheng Li & Hua Zheng & Zhiyun Ouyang, 2021. "Matching Ecosystem Services Supply and Demand through Land Use Optimization: A Study of the Guangdong-Hong Kong-Macao Megacity," IJERPH, MDPI, vol. 18(5), pages 1-15, February.
    6. Yue Wang & Qi Fu & Tinghui Wang & Mengfan Gao & Jinhua Chen, 2022. "Multiscale Characteristics and Drivers of the Bundles of Ecosystem Service Budgets in the Su-Xi-Chang Region, China," IJERPH, MDPI, vol. 19(19), pages 1-26, October.
    7. Dongmeng Wang & Yongge Hu & Puxia Tang & Chang Liu & Weihan Kong & Jie Jiao & Krisztina Filepné Kovács & Dezheng Kong & Yakai Lei & Yiping Liu, 2022. "Identification of Priority Implementation Areas and Configuration Types for Green Infrastructure Based on Ecosystem Service Demands in Metropolitan City," IJERPH, MDPI, vol. 19(13), pages 1-19, July.
    8. Bryan, Brett A. & Ye, Yanqiong & Zhang, Jia'en & Connor, Jeffery D., 2018. "Land-use change impacts on ecosystem services value: Incorporating the scarcity effects of supply and demand dynamics," Ecosystem Services, Elsevier, vol. 32(PA), pages 144-157.
    9. Lorilla, Roxanne Suzette & Poirazidis, Konstantinos & Detsis, Vassilis & Kalogirou, Stamatis & Chalkias, Christos, 2020. "Socio-ecological determinants of multiple ecosystem services on the Mediterranean landscapes of the Ionian Islands (Greece)," Ecological Modelling, Elsevier, vol. 422(C).
    10. Tao, Yu & Tao, Qin & Sun, Xiao & Qiu, Jiangxiao & Pueppke, Steven G. & Ou, Weixin & Guo, Jie & Qi, Jiaguo, 2022. "Mapping ecosystem service supply and demand dynamics under rapid urban expansion: A case study in the Yangtze River Delta of China," Ecosystem Services, Elsevier, vol. 56(C).
    11. Qinqin Shi & Hai Chen & Di Liu & Tianwei Geng & Hang Zhang, 2022. "Identifying the Spatial Imbalance in the Supply and Demand of Cultural Ecosystem Services," IJERPH, MDPI, vol. 19(11), pages 1-20, May.
    12. Hongjuan Zhang & Juan Feng & Zhicheng Zhang & Kang Liu & Xin Gao & Zidong Wang, 2020. "Regional Spatial Management Based on Supply–Demand Risk of Ecosystem Services—A Case Study of the Fenghe River Watershed," IJERPH, MDPI, vol. 17(11), pages 1-25, June.
    13. Wang, Zhuangzhuang & Fu, Bojie & Zhang, Liwei & Wu, Xutong & Li, Yingjie, 2022. "Ecosystem service assessments across cascade levels: typology and an evidence map," Ecosystem Services, Elsevier, vol. 57(C).
    14. Veerkamp, Clara J. & Schipper, Aafke M. & Hedlund, Katarina & Lazarova, Tanya & Nordin, Amanda & Hanson, Helena I., 2021. "A review of studies assessing ecosystem services provided by urban green and blue infrastructure," Ecosystem Services, Elsevier, vol. 52(C).
    15. Zhenzhen Yuan & Weijie Li & Yong Wang & Dayun Zhu & Qiuhong Wang & Yan Liu & Lingyan Zhou, 2022. "Ecosystem Health Evaluation and Ecological Security Patterns Construction Based on VORSD and Circuit Theory: A Case Study in the Three Gorges Reservoir Region in Chongqing, China," IJERPH, MDPI, vol. 20(1), pages 1-19, December.
    16. Agudelo, César Augusto Ruiz & Bustos, Sandra Liliana Hurtado & Moreno, Carmen Alicia Parrado, 2020. "Modeling interactions among multiple ecosystem services. A critical review," Ecological Modelling, Elsevier, vol. 429(C).
    17. Bojie Wang & Haiping Tang & Qin Zhang & Fengqi Cui, 2020. "Exploring Connections among Ecosystem Services Supply, Demand and Human Well-Being in a Mountain-Basin System, China," IJERPH, MDPI, vol. 17(15), pages 1-15, July.
    18. De Valck, Jeremy & Beames, Alistair & Liekens, Inge & Bettens, Maarten & Seuntjens, Piet & Broekx, Steven, 2019. "Valuing urban ecosystem services in sustainable brownfield redevelopment," Ecosystem Services, Elsevier, vol. 35(C), pages 139-149.
    19. Huber, Lisa & Schirpke, Uta & Marsoner, Thomas & Tasser, Erich & Leitinger, Georg, 2020. "Does socioeconomic diversification enhance multifunctionality of mountain landscapes?," Ecosystem Services, Elsevier, vol. 44(C).
    20. Xueqi Wang & Shuo Wang & Gengyuan Liu & Ningyu Yan & Qing Yang & Bin Chen & Junhong Bai & Yan Zhang & Ginevra Virginia Lombardi, 2022. "Identification of Priority Areas for Improving Urban Ecological Carrying Capacity: Based on Supply–Demand Matching of Ecosystem Services," Land, MDPI, vol. 11(5), pages 1-24, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8949-:d:1162102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.