IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i8p4646-d793055.html
   My bibliography  Save this article

Pricing Policy in an Inventory Model with Green Level Dependent Demand for a Deteriorating Item

Author

Listed:
  • Md. Abdul Hakim

    (Department of Mathematics, Comilla University, Cumilla 3506, Bangladesh)

  • Ibrahim M. Hezam

    (Department of Statistics & Operations Research, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia)

  • Adel Fahad Alrasheedi

    (Department of Statistics & Operations Research, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia)

  • Jeonghwan Gwak

    (Department of Software, Korea National University of Transportation, Chungju 27469, Korea
    Department of Biomedical Engineering, Korea National University of Transportation, Chungju 27469, Korea
    Department of AI Robotics Engineering, Korea National University of Transportation, Chungju 27469, Korea
    Department of IT & Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Korea)

Abstract

The goal of this research is to investigate an inventory model for degrading commodities with linear selling prices and nonlinear green level-dependent demand for an item. The pre-payment option with a one-time flat reduction on the product’s selling price is considered here. The governing differential equations are used to mathematically define the model and solve numerically to optimize the model’s average profit. After that, the model is tested using a numerical example, and sensitivity analyses are run to see how changing inventory factors affects the best strategy. The concavity of the objective function is shown graphically with the help of MATLAB software. Finally, some applications of this approach and future scopes are discussed.

Suggested Citation

  • Md. Abdul Hakim & Ibrahim M. Hezam & Adel Fahad Alrasheedi & Jeonghwan Gwak, 2022. "Pricing Policy in an Inventory Model with Green Level Dependent Demand for a Deteriorating Item," Sustainability, MDPI, vol. 14(8), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4646-:d:793055
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/8/4646/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/8/4646/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mehdi Golari & Neng Fan & Tongdan Jin, 2017. "Multistage Stochastic Optimization for Production-Inventory Planning with Intermittent Renewable Energy," Production and Operations Management, Production and Operations Management Society, vol. 26(3), pages 409-425, March.
    2. Shilpy Tayal & S.R. Singh & Rajendra Sharma & Anand Chauhan, 2014. "Two echelon supply chain model for deteriorating items with effective investment in preservation technology," International Journal of Mathematics in Operational Research, Inderscience Enterprises Ltd, vol. 6(1), pages 84-105.
    3. Rajan Mondal & Ali Akbar Shaikh & Asoke Kumar Bhunia, 2019. "Crisp and interval inventory models for ameliorating item with Weibull distributed amelioration and deterioration via different variants of quantum behaved particle swarm optimization-based techniques," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 25(6), pages 602-626, November.
    4. Dye, Chung-Yuan & Yang, Chih-Te, 2016. "Optimal dynamic pricing and preservation technology investment for deteriorating products with reference price effects," Omega, Elsevier, vol. 62(C), pages 52-67.
    5. Shayan Tavakoli & Ata Allah Taleizadeh, 2017. "An EOQ model for decaying item with full advanced payment and conditional discount," Annals of Operations Research, Springer, vol. 259(1), pages 415-436, December.
    6. Alberto Cambini & Laura Martein, 2009. "Generalized Convexity and Optimization," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-540-70876-6, December.
    7. Asim Paul & Magfura Pervin & Sankar Kumar Roy & Nelson Maculan & Gerhard-Wilhelm Weber, 2022. "A green inventory model with the effect of carbon taxation," Annals of Operations Research, Springer, vol. 309(1), pages 233-248, February.
    8. Magfura Pervin & Sankar Kumar Roy & Gerhard-Wilhelm Weber, 2018. "Analysis of inventory control model with shortage under time-dependent demand and time-varying holding cost including stochastic deterioration," Annals of Operations Research, Springer, vol. 260(1), pages 437-460, January.
    9. Maihami, Reza & Nakhai Kamalabadi, Isa, 2012. "Joint pricing and inventory control for non-instantaneous deteriorating items with partial backlogging and time and price dependent demand," International Journal of Production Economics, Elsevier, vol. 136(1), pages 116-122.
    10. Fangruo Chen, 2001. "Market Segmentation, Advanced Demand Information, and Supply Chain Performance," Manufacturing & Service Operations Management, INFORMS, vol. 3(1), pages 53-67, February.
    11. Khan, Md. Al-Amin & Shaikh, Ali Akbar & Cárdenas-Barrón, Leopoldo Eduardo, 2021. "An inventory model under linked-to-order hybrid partial advance payment, partial credit policy, all-units discount and partial backlogging with capacity constraint," Omega, Elsevier, vol. 103(C).
    12. Gérard P. Cachon, 2004. "The Allocation of Inventory Risk in a Supply Chain: Push, Pull, and Advance-Purchase Discount Contracts," Management Science, INFORMS, vol. 50(2), pages 222-238, February.
    13. Hammami, Ramzi & Nouira, Imen & Frein, Yannick, 2015. "Carbon emissions in a multi-echelon production-inventory model with lead time constraints," International Journal of Production Economics, Elsevier, vol. 164(C), pages 292-307.
    14. Debashis Dutta & Pavan Kumar, 2015. "A partial backlogging inventory model for deteriorating items with time-varying demand and holding cost," International Journal of Mathematics in Operational Research, Inderscience Enterprises Ltd, vol. 7(3), pages 281-296.
    15. Chun-Tao Chang, 2004. "Inventory Models With Stock-Dependent Demand And Nonlinear Holding Costs For Deteriorating Items," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 21(04), pages 435-446.
    16. Md. Al-Amin Khan & Ali Akbar Shaikh & Gobinda Chandra Panda & Asoke Kumar Bhunia & Ioannis Konstantaras, 2020. "Non-instantaneous deterioration effect in ordering decisions for a two-warehouse inventory system under advance payment and backlogging," Annals of Operations Research, Springer, vol. 289(2), pages 243-275, June.
    17. Taleizadeh, Ata Allah & Noori-daryan, Mahsa & Cárdenas-Barrón, Leopoldo Eduardo, 2015. "Joint optimization of price, replenishment frequency, replenishment cycle and production rate in vendor managed inventory system with deteriorating items," International Journal of Production Economics, Elsevier, vol. 159(C), pages 285-295.
    18. Miranda, Pablo A. & Garrido, Rodrigo A., 2004. "Incorporating inventory control decisions into a strategic distribution network design model with stochastic demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 40(3), pages 183-207, May.
    19. Pal, S. & Goswami, A. & Chaudhuri, K. S., 1993. "A deterministic inventory model for deteriorating items with stock-dependent demand rate," International Journal of Production Economics, Elsevier, vol. 32(3), pages 291-299, November.
    20. Sana, Shib Sankar, 2020. "Price competition between green and non green products under corporate social responsible firm," Journal of Retailing and Consumer Services, Elsevier, vol. 55(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mrudul Y. Jani & Heta A. Patel & Amrita Bhadoriya & Urmila Chaudhari & Mohamed Abbas & Malak S. Alqahtani, 2023. "Deterioration Control Decision Support System for the Retailer during Availability of Trade Credit and Shortages," Mathematics, MDPI, vol. 11(3), pages 1-27, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Amin Khan, Md. & Shaikh, Ali Akbar & Konstantaras, Ioannis & Bhunia, Asoke Kumar & Cárdenas-Barrón, Leopoldo Eduardo, 2020. "Inventory models for perishable items with advanced payment, linearly time-dependent holding cost and demand dependent on advertisement and selling price," International Journal of Production Economics, Elsevier, vol. 230(C).
    2. Janssen, Larissa & Claus, Thorsten & Sauer, Jürgen, 2016. "Literature review of deteriorating inventory models by key topics from 2012 to 2015," International Journal of Production Economics, Elsevier, vol. 182(C), pages 86-112.
    3. Guchhait, Partha & Kumar Maiti, Manas & Maiti, Manoranjan, 2013. "Production-inventory models for a damageable item with variable demands and inventory costs in an imperfect production process," International Journal of Production Economics, Elsevier, vol. 144(1), pages 180-188.
    4. Zhang, Jianxiong & Liu, Guowei & Zhang, Qiao & Bai, Zhenyu, 2015. "Coordinating a supply chain for deteriorating items with a revenue sharing and cooperative investment contract," Omega, Elsevier, vol. 56(C), pages 37-49.
    5. Mahmood Vahdani & Zeinab Sazvar & Kannan Govindan, 2022. "An integrated economic disposal and lot-sizing problem for perishable inventories with batch production and corrupt stock-dependent holding cost," Annals of Operations Research, Springer, vol. 315(2), pages 2135-2167, August.
    6. Md. Al-Amin Khan & Ali Akbar Shaikh & Gobinda Chandra Panda & Asoke Kumar Bhunia & Ioannis Konstantaras, 2020. "Non-instantaneous deterioration effect in ordering decisions for a two-warehouse inventory system under advance payment and backlogging," Annals of Operations Research, Springer, vol. 289(2), pages 243-275, June.
    7. Sudarshan Bardhan & Haimanti Pal & Bibhas Chandra Giri, 2019. "Optimal replenishment policy and preservation technology investment for a non-instantaneous deteriorating item with stock-dependent demand," Operational Research, Springer, vol. 19(2), pages 347-368, June.
    8. Yue Xie & Allen H. Tai & Wai-Ki Ching & Yong-Hong Kuo & Na Song, 2021. "Joint inspection and inventory control for deteriorating items with time-dependent demand and deteriorating rate," Annals of Operations Research, Springer, vol. 300(1), pages 225-265, May.
    9. Chang, Chun-Tao & Teng, Jinn-Tsair & Goyal, Suresh Kumar, 2010. "Optimal replenishment policies for non-instantaneous deteriorating items with stock-dependent demand," International Journal of Production Economics, Elsevier, vol. 123(1), pages 62-68, January.
    10. Qi Chen & Qi Xu & Wenjie Wang, 2019. "Optimal Policies for the Pricing and Replenishment of Fashion Apparel considering the Effect of Fashion Level," Complexity, Hindawi, vol. 2019, pages 1-12, February.
    11. Goyal, Suresh Kumar & Chang, Chun-Tao, 2009. "Optimal ordering and transfer policy for an inventory with stock dependent demand," European Journal of Operational Research, Elsevier, vol. 196(1), pages 177-185, July.
    12. Dye, Chung-Yuan, 2013. "The effect of preservation technology investment on a non-instantaneous deteriorating inventory model," Omega, Elsevier, vol. 41(5), pages 872-880.
    13. Ping Ruan & Yung-Fu Huang & Ming-Wei Weng, 2022. "Impact of COVID-19 on Supply Chains: A Hybrid Trade Credit Policy," Mathematics, MDPI, vol. 10(8), pages 1-22, April.
    14. Mamta Gupta & Sunil Tiwari & Chandra K. Jaggi, 2020. "Retailer’s ordering policies for time-varying deteriorating items with partial backlogging and permissible delay in payments in a two-warehouse environment," Annals of Operations Research, Springer, vol. 295(1), pages 139-161, December.
    15. Md Sadikur Rahman & Subhajit Das & Amalesh Kumar Manna & Ali Akbar Shaikh & Asoke Kumar Bhunia & Leopoldo Eduardo Cárdenas-Barrón & Gerardo Treviño-Garza & Armando Céspedes-Mota, 2021. "A Mathematical Model of the Production Inventory Problem for Mixing Liquid Considering Preservation Facility," Mathematics, MDPI, vol. 9(24), pages 1-19, December.
    16. R. Sundara rajan & R. Uthayakumar, 2017. "Comprehensive solution procedure for optimizing replenishment policies of instantaneous deteriorating items with stock-dependent demand under partial trade credit linked to order quantity," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1343-1373, November.
    17. Tamer Boyacı & Özalp Özer, 2010. "Information Acquisition for Capacity Planning via Pricing and Advance Selling: When to Stop and Act?," Operations Research, INFORMS, vol. 58(5), pages 1328-1349, October.
    18. Ruihai Li & Jinn-Tsair Teng & Yingfei Zheng, 2019. "Optimal credit term, order quantity and selling price for perishable products when demand depends on selling price, expiration date, and credit period," Annals of Operations Research, Springer, vol. 280(1), pages 377-405, September.
    19. Fauza, Gusti & Amer, Yousef & Lee, Sang-Heon & Prasetyo, Hari, 2016. "An integrated single-vendor multi-buyer production-inventory policy for food products incorporating quality degradation," International Journal of Production Economics, Elsevier, vol. 182(C), pages 409-417.
    20. Daniel Granot & Shuya Yin, 2008. "Price and Order Postponement in a Decentralized Newsvendor Model with Multiplicative and Price-Dependent Demand," Operations Research, INFORMS, vol. 56(1), pages 121-139, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4646-:d:793055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.