IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p16999-d1007639.html
   My bibliography  Save this article

A Sustainable Production Scheduling with Backorders under Different Forms of Rework Process and Green Investment

Author

Listed:
  • R. Udayakumar

    (Department of Mathematics, Dr. N.G.P Institute of Technology, Coimbatore 641048, Tamil Nadu, India)

  • S. Priyan

    (Department of IT & Engineering, Faculty of Mathematics, Amity University Tashkent, Tashkent 100028, Uzbekistan)

  • Mandeep Mittal

    (Department of Mathematics, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201313, Uttar Pradesh, India)

  • Anuwat Jirawattanapanit

    (Department of Mathematics, Faculty of Science, Phuket Rajabhat University (PKRU), Phuket 83000, Thailand)

  • Grienggrai Rajchakit

    (Department of Mathematics, Faculty of Science, Maejo University, Chiang Mai 50290, Thailand)

  • Pramet Kaewmesri

    (Geo-Informatics and Space Technology Development Agency (GISTDA), Bangkok 10210, Thailand)

Abstract

Rework is currently a necessity for businesses and commercial organizations across the world. It is only beneficial in tackling climate change if the process emits less greenhouse gases than would otherwise be emitted. This study designs an optimal production scheduling model to reduce both carbon emissions during the processes of production, transport and storage, and setup cost by leveraging on green technology efforts in an imperfect production process where a fraction of items is erroneous so that the firm may run out of inventory. The producer implements a rework strategy to rectify the flawed products, anda flexible rework rate is offered since the rework might be executed on various schemes. The flexible rework allows the producer to choose therework rate, which can differ from the production rate, as well as the rework process itself, which can be asynchronous or synchronous.The two forms of green investments: quadratic and exponential are considered in the study. The main point of the study is to derive a solution procedure of the various problem settings associated with the rework rate, rework process and green investment. The findings suggest that developing the optimal production schedule (lot-sizes, backorders, setup cost and green investment amount) can lower the manufacturing sector’s excessive ecological carbon emissions. The findings also support the idea that making green investments is the most cost-effective way to cut carbon emissions and setup cost simultaneously.

Suggested Citation

  • R. Udayakumar & S. Priyan & Mandeep Mittal & Anuwat Jirawattanapanit & Grienggrai Rajchakit & Pramet Kaewmesri, 2022. "A Sustainable Production Scheduling with Backorders under Different Forms of Rework Process and Green Investment," Sustainability, MDPI, vol. 14(24), pages 1-38, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16999-:d:1007639
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/16999/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/16999/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Juanjuan Qin & Xiaojian Bai & Liangjie Xia, 2015. "Sustainable Trade Credit and Replenishment Policies under the Cap-And-Trade and Carbon Tax Regulations," Sustainability, MDPI, vol. 7(12), pages 1-22, December.
    2. Liao, Gwo-Liang & Chen, Yen Hung & Sheu, Shey-Huei, 2009. "Optimal economic production quantity policy for imperfect process with imperfect repair and maintenance," European Journal of Operational Research, Elsevier, vol. 195(2), pages 348-357, June.
    3. Sarkar, Biswajit & Moon, Ilkyeong, 2014. "Improved quality, setup cost reduction, and variable backorder costs in an imperfect production process," International Journal of Production Economics, Elsevier, vol. 155(C), pages 204-213.
    4. Liu, John J. & Yang, Ping, 1996. "Optimal lot-sizing in an imperfect production system with homogeneous reworkable jobs," European Journal of Operational Research, Elsevier, vol. 91(3), pages 517-527, June.
    5. Zied Jemai & Y Bouchery & Asma Ghaffari & Yves Dallery, 2012. "Including sustainability criteria into inventory models," Post-Print hal-01672398, HAL.
    6. Freimer, Michael & Thomas, Douglas & Tyworth, John, 2006. "The value of setup cost reduction and process improvement for the economic production quantity model with defects," European Journal of Operational Research, Elsevier, vol. 173(1), pages 241-251, August.
    7. Al-Salamah, Muhammad, 2019. "Economic production quantity in an imperfect manufacturing process with synchronous and asynchronous flexible rework rates," Operations Research Perspectives, Elsevier, vol. 6(C).
    8. Bouchery, Yann & Ghaffari, Asma & Jemai, Zied & Dallery, Yves, 2012. "Including sustainability criteria into inventory models," European Journal of Operational Research, Elsevier, vol. 222(2), pages 229-240.
    9. Nita H. Shah & Dushyantkumar G. Patel & Digeshkumar B. Shah, 2018. "EPQ model for returned/reworked inventories during imperfect production process under price-sensitive stock-dependent demand," Operational Research, Springer, vol. 18(2), pages 343-359, July.
    10. Liao, Gwo-Liang & Sheu, Shey-Huei, 2011. "Economic production quantity model for randomly failing production process with minimal repair and imperfect maintenance," International Journal of Production Economics, Elsevier, vol. 130(1), pages 118-124, March.
    11. Tapan Kumar Datta, 2017. "Effect of Green Technology Investment on a Production-Inventory System with Carbon Tax," Advances in Operations Research, Hindawi, vol. 2017, pages 1-12, December.
    12. Evan L. Porteus, 1986. "Optimal Lot Sizing, Process Quality Improvement and Setup Cost Reduction," Operations Research, INFORMS, vol. 34(1), pages 137-144, February.
    13. Dye, Chung-Yuan & Yang, Chih-Te, 2015. "Sustainable trade credit and replenishment decisions with credit-linked demand under carbon emission constraints," European Journal of Operational Research, Elsevier, vol. 244(1), pages 187-200.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Salamah, Muhammad, 2019. "Economic production quantity in an imperfect manufacturing process with synchronous and asynchronous flexible rework rates," Operations Research Perspectives, Elsevier, vol. 6(C).
    2. Tapan Kumar Datta & Prasanta Nath & Karabi Dutta Choudhury, 2020. "A hybrid carbon policy inventory model with emission source-based green investments," OPSEARCH, Springer;Operational Research Society of India, vol. 57(1), pages 202-220, March.
    3. Sarkar, Biswajit & Saren, Sharmila, 2016. "Product inspection policy for an imperfect production system with inspection errors and warranty cost," European Journal of Operational Research, Elsevier, vol. 248(1), pages 263-271.
    4. Jia-Liang Pan & Chui-Yu Chiu & Kun-Shan Wu & Chih-Te Yang & Yen-Wen Wang, 2021. "Optimal Pricing, Advertising, Production, Inventory and Investing Policies in a Multi-Stage Sustainable Supply Chain," Energies, MDPI, vol. 14(22), pages 1-20, November.
    5. Suchitra Pattnaik & Mitali Madhusmita Nayak & Stefano Abbate & Piera Centobelli, 2021. "Recent Trends in Sustainable Inventory Models: A Literature Review," Sustainability, MDPI, vol. 13(21), pages 1-20, October.
    6. Ata Allah Taleizadeh & Leila Aliabadi & Park Thaichon, 2022. "A sustainable inventory system with price-sensitive demand and carbon emissions under partial trade credit and partial backordering," Operational Research, Springer, vol. 22(4), pages 4471-4516, September.
    7. Ata Allah Taleizadeh, 2018. "A constrained integrated imperfect manufacturing-inventory system with preventive maintenance and partial backordering," Annals of Operations Research, Springer, vol. 261(1), pages 303-337, February.
    8. Battini, Daria & Persona, Alessandro & Sgarbossa, Fabio, 2014. "A sustainable EOQ model: Theoretical formulation and applications," International Journal of Production Economics, Elsevier, vol. 149(C), pages 145-153.
    9. Battini, Daria & Glock, Christoph H. & Grosse, Eric H. & Persona, Alessandro & Sgarbossa, Fabio, 2017. "Reprint of “Ergo-lot-sizing: An approach to integrate ergonomic and economic objectives in manual materials handling”," International Journal of Production Economics, Elsevier, vol. 194(C), pages 32-42.
    10. Dong, Ciwei & Liu, Qingyu & Shen, Bin, 2019. "To be or not to be green? Strategic investment for green product development in a supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 193-227.
    11. Mallidis, Ioannis & Vlachos, Dimitrios & Iakovou, Eleftherios & Dekker, Rommert, 2014. "Design and planning for green global supply chains under periodic review replenishment policies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 210-235.
    12. Hsu, Jia-Tzer & Hsu, Lie-Fern, 2013. "An EOQ model with imperfect quality items, inspection errors, shortage backordering, and sales returns," International Journal of Production Economics, Elsevier, vol. 143(1), pages 162-170.
    13. Pham, An & Jin, Tongdan & Novoa, Clara & Qin, Jin, 2019. "A multi-site production and microgrid planning model for net-zero energy operations," International Journal of Production Economics, Elsevier, vol. 218(C), pages 260-274.
    14. Hong, Zhaofu & Dai, Wei & Luh, Hsing & Yang, Chenchen, 2018. "Optimal configuration of a green product supply chain with guaranteed service time and emission constraints," European Journal of Operational Research, Elsevier, vol. 266(2), pages 663-677.
    15. Dharmendra Yadav & Umesh Chand & Ruchi Goel & Biswajit Sarkar, 2023. "Smart Production System with Random Imperfect Process, Partial Backordering, and Deterioration in an Inflationary Environment," Mathematics, MDPI, vol. 11(2), pages 1-20, January.
    16. Konur, Dinçer & Campbell, James F. & Monfared, Sepideh A., 2017. "Economic and environmental considerations in a stochastic inventory control model with order splitting under different delivery schedules among suppliers," Omega, Elsevier, vol. 71(C), pages 46-65.
    17. Hu, Qiwei & Chakhar, Salem & Siraj, Sajid & Labib, Ashraf, 2017. "Spare parts classification in industrial manufacturing using the dominance-based rough set approach," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1136-1163.
    18. Nasr, Walid W. & Maddah, Bacel & Salameh, Moueen K., 2013. "EOQ with a correlated binomial supply," International Journal of Production Economics, Elsevier, vol. 144(1), pages 248-255.
    19. Kazaz, Burak & Sloan, Thomas W., 2013. "The impact of process deterioration on production and maintenance policies," European Journal of Operational Research, Elsevier, vol. 227(1), pages 88-100.
    20. Daria Battini & Martina Calzavara & Ilaria Isolan & Fabio Sgarbossa & Francesco Zangaro, 2018. "Sustainability in Material Purchasing: A Multi-Objective Economic Order Quantity Model under Carbon Trading," Sustainability, MDPI, vol. 10(12), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16999-:d:1007639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.