IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i22p15300-d976180.html
   My bibliography  Save this article

How Are Medium-Sized Cities Implementing Their Smart City Governance? Experiences from the Emilia-Romagna Region

Author

Listed:
  • Barbara Caselli

    (Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/a, 43124 Parma, PR, Italy)

  • Gloria Pellicelli

    (Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/a, 43124 Parma, PR, Italy)

  • Silvia Rossetti

    (Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/a, 43124 Parma, PR, Italy)

  • Michele Zazzi

    (Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/a, 43124 Parma, PR, Italy)

Abstract

Within the smart city debate, this paper aims to reflect on whether and how medium-sized Italian cities are organizing their smart transition technically as well as administratively. The smart city concept was developed in the 1990s when major European cities began a smart transition through widespread urban regeneration projects and the introduction of advanced technologies applied not only to the physical city but also to governance, policymaking, and communication, involving multiple sectors of city administrations. In the last decade, medium-sized cities have also started this transition process, although with lower emphasis than metropolitan cities. In most medium-sized Italian cities, this transition, in accordance with national and regional guidelines, has sometimes led to competencies reorganization within local governments. Within this framework, the paper examines the tools with which medium-sized Italian cities’ administrations address the smart transformation in their territories, comparing a sample of 10 cities in Emilia-Romagna and considering policymaking, governance structure, past and current projects, and communication transparency. The expected result is therefore a systematic review of experiences to reconstruct a complex picture of the political and administrative choices that have led to the implementation or setting in motion of smart transformation processes to draw some useful lessons.

Suggested Citation

  • Barbara Caselli & Gloria Pellicelli & Silvia Rossetti & Michele Zazzi, 2022. "How Are Medium-Sized Cities Implementing Their Smart City Governance? Experiences from the Emilia-Romagna Region," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15300-:d:976180
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/22/15300/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/22/15300/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sarah Giest, 2017. "Big data analytics for mitigating carbon emissions in smart cities: opportunities and challenges," European Planning Studies, Taylor & Francis Journals, vol. 25(6), pages 941-957, June.
    2. Robert G. Hollands, 2008. "Will the real smart city please stand up?," City, Taylor & Francis Journals, vol. 12(3), pages 303-320, December.
    3. Gabriela Viale Pereira & Maria Alexandra Cunha & Thomas J. Lampoltshammer & Peter Parycek & Maurício Gregianin Testa, 2017. "Increasing collaboration and participation in smart city governance: a cross-case analysis of smart city initiatives," Information Technology for Development, Taylor & Francis Journals, vol. 23(3), pages 526-553, July.
    4. Albert Meijer, 2016. "Smart City Governance: A Local Emergent Perspective," Public Administration and Information Technology, in: J. Ramon Gil-Garcia & Theresa A. Pardo & Taewoo Nam (ed.), Smarter as the New Urban Agenda, edition 1, pages 73-85, Springer.
    5. Anastasia Stratigea & Akrivi Leka & Chrysses Nicolaides, 2017. "Small and Medium-Sized Cities and Insular Communities in the Mediterranean: Coping with Sustainability Challenges in the Smart City Context," Progress in IS, in: Anastasia Stratigea & Elias Kyriakides & Chrysses Nicolaides (ed.), Smart Cities in the Mediterranean, pages 3-29, Springer.
    6. Lee, Jung Hoon & Hancock, Marguerite Gong & Hu, Mei-Chih, 2014. "Towards an effective framework for building smart cities: Lessons from Seoul and San Francisco," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 80-99.
    7. Patrizia Lombardi & Alberto Vanolo, 2015. "Smart City as a Mobile Technology: Critical Perspectives on Urban Development Policies," Public Administration and Information Technology, in: Manuel Pedro Rodríguez-Bolívar (ed.), Transforming City Governments for Successful Smart Cities, edition 127, pages 147-161, Springer.
    8. Francesco Pinna & Francesca Masala & Chiara Garau, 2017. "Urban Policies and Mobility Trends in Italian Smart Cities," Sustainability, MDPI, vol. 9(4), pages 1-21, March.
    9. Tan Yigitcanlar & Federico Cugurullo, 2020. "The Sustainability of Artificial Intelligence: An Urbanistic Viewpoint from the Lens of Smart and Sustainable Cities," Sustainability, MDPI, vol. 12(20), pages 1-24, October.
    10. Evandro Gonzalez Lima & Christine Kowal Chinelli & Andre Luis Azevedo Guedes & Elaine Garrido Vazquez & Ahmed W. A. Hammad & Assed Naked Haddad & Carlos Alberto Pereira Soares, 2020. "Smart and Sustainable Cities: The Main Guidelines of City Statute for Increasing the Intelligence of Brazilian Cities," Sustainability, MDPI, vol. 12(3), pages 1-26, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karimikia, Hadi & Bradshaw, Robert & Singh, Harminder & Ojo, Adegboyega & Donnellan, Brian & Guerin, Michael, 2022. "An emergent taxonomy of boundary spanning in the smart city context – The case of smart Dublin," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    2. Solis, Miriam & Bashar, Samira Binte, 2022. "Social equity implications of advanced water metering infrastructure," Utilities Policy, Elsevier, vol. 79(C).
    3. Haarstad, Håvard & Wathne, Marikken W., 2019. "Are smart city projects catalyzing urban energy sustainability?," Energy Policy, Elsevier, vol. 129(C), pages 918-925.
    4. Mora, Luca & Gerli, Paolo & Ardito, Lorenzo & Messeni Petruzzelli, Antonio, 2023. "Smart city governance from an innovation management perspective: Theoretical framing, review of current practices, and future research agenda," Technovation, Elsevier, vol. 123(C).
    5. Paula Bajdor & Marta Starostka-Patyk, 2021. "Smart City: A Bibliometric Analysis of Conceptual Dimensions and Areas," Energies, MDPI, vol. 14(14), pages 1-28, July.
    6. Vu, Khuong & Hartley, Kris, 2018. "Promoting smart cities in developing countries: Policy insights from Vietnam," Telecommunications Policy, Elsevier, vol. 42(10), pages 845-859.
    7. Palmyra Repette & Jamile Sabatini-Marques & Tan Yigitcanlar & Denilson Sell & Eduardo Costa, 2021. "The Evolution of City-as-a-Platform: Smart Urban Development Governance with Collective Knowledge-Based Platform Urbanism," Land, MDPI, vol. 10(1), pages 1-25, January.
    8. Sabina Baraniewicz-Kotasińska, 2022. "The Scandinavian Third Way as a Proposal for Sustainable Smart City Development—A Case Study of Aarhus City," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    9. Johannes Stübinger & Lucas Schneider, 2020. "Understanding Smart City—A Data-Driven Literature Review," Sustainability, MDPI, vol. 12(20), pages 1-23, October.
    10. Łukasz Brzeziński & Magdalena Krystyna Wyrwicka, 2022. "Fundamental Directions of the Development of the Smart Cities Concept and Solutions in Poland," Energies, MDPI, vol. 15(21), pages 1-52, November.
    11. Renata Biadacz & Marek Biadacz, 2021. "Implementation of “Smart” Solutions and An Attempt to Measure Them: A Case Study of Czestochowa, Poland," Energies, MDPI, vol. 14(18), pages 1-28, September.
    12. Margarida Rodrigues & Mário Franco, 2018. "Measuring the Performance in Creative Cities: Proposal of a Multidimensional Model," Sustainability, MDPI, vol. 10(11), pages 1-21, November.
    13. Bresciani, Stefano & Ferraris, Alberto & Del Giudice, Manlio, 2018. "The management of organizational ambidexterity through alliances in a new context of analysis: Internet of Things (IoT) smart city projects," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 331-338.
    14. Małgorzata Baran & Monika Kłos & Monika Chodorek & Karolina Marchlewska-Patyk, 2022. "The Resilient Smart City Model–Proposal for Polish Cities," Energies, MDPI, vol. 15(5), pages 1-23, March.
    15. van den Buuse, Daniel & Kolk, Ans, 2019. "An exploration of smart city approaches by international ICT firms," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 220-234.
    16. Nilssen, Maja, 2019. "To the smart city and beyond? Developing a typology of smart urban innovation," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 98-104.
    17. Guido Perboli & Mariangela Rosano, 2020. "A Taxonomic Analysis of Smart City Projects in North America and Europe," Sustainability, MDPI, vol. 12(18), pages 1-23, September.
    18. Francesco Schiavone & Francesco Paolo Appio & Luca Mora & Marcello Risitano, 2020. "The strategic, organizational, and entrepreneurial evolution of smart cities," International Entrepreneurship and Management Journal, Springer, vol. 16(4), pages 1155-1165, December.
    19. Barrutia, Jose M. & Echebarria, Carmen & Aguado-Moralejo, Itziar & Apaolaza-Ibáñez, Vanessa & Hartmann, Patrick, 2022. "Leading smart city projects: Government dynamic capabilities and public value creation," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    20. Kummitha, Rama Krishna Reddy, 2018. "Entrepreneurial urbanism and technological panacea: Why Smart City planning needs to go beyond corporate visioning?," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 330-339.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15300-:d:976180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.