IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i22p14873-d969236.html
   My bibliography  Save this article

Sea Minerals Reduce Dysbiosis, Improve Pasture Productivity and Plant Morphometrics in Pasture Dieback Affected Soils

Author

Listed:
  • Maria M. Whitton

    (Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD 4702, Australia)

  • Xipeng Ren

    (Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD 4702, Australia)

  • Sung J. Yu

    (Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD 4702, Australia)

  • Andrew D. Irving

    (Coastal Marine Ecosystems Research Centre, Central Queensland University, Gladstone, QLD 4680, Australia)

  • Tieneke Trotter

    (Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD 4702, Australia)

  • Yadav S. Bajagai

    (Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD 4702, Australia)

  • Dragana Stanley

    (Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD 4702, Australia)

Abstract

Pasture dieback (PD) is a grassland deteriorating syndrome resulting in grass loss and weed expansion in Australian pastures, with current estimates indicating that over four million hectares are affected. PD creates financial losses to the industry by reducing animal carrying capacity and producing poor-quality feed, resulting in diminished productivity. After more than a decade since PD first appeared in Australia, the causes and effective treatments are still unknown. Suggested causes include soil microbiota dysbiosis, pathogens, insects, climate change and overuse of chemical fertilisers. Sea minerals have been suggested as capable of improving plants’ yield, quality, taste, and nutritional value, but were never brought into conventional practice as an alternative to chemical fertilisers. Here, we investigated the capacity of sea minerals to improve grass health and yield of PD-affected soil. The replicate plots were treated with water or with 4 mL/m 2 of commercially available sea mineral product to investigate the soil chemistry profile, plant morphometrics, pasture productivity, soil microbiota profile, and microbiota-nutrient interactions. Sea mineral application significantly increased total dry matter 20 weeks after a single application, translating to an additional 967 kg/ha; this benefit was still present at 498 kg/ha eleven months post a single application. Sea mineral application improved soil microbiota by boosting beneficial taxa while reducing genera associated with arid and toxic soils. Additionally, sea mineral application increased the number of grassroots up to eleven months post a single application. Our data suggest the benefits of sea mineral application to damaged, unproductive or exhausted soils could be further explored as a natural, affordable, and non-toxic alternative to chemical fertilisers.

Suggested Citation

  • Maria M. Whitton & Xipeng Ren & Sung J. Yu & Andrew D. Irving & Tieneke Trotter & Yadav S. Bajagai & Dragana Stanley, 2022. "Sea Minerals Reduce Dysbiosis, Improve Pasture Productivity and Plant Morphometrics in Pasture Dieback Affected Soils," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:14873-:d:969236
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/22/14873/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/22/14873/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anna Karpinska & Demi Ryan & Kieran Germaine & David Dowling & Patrick Forrestal & Thomais Kakouli-Duarte, 2021. "Soil Microbial and Nematode Community Response to the Field Application of Recycled Bio-Based Fertilisers in Irish Grassland," Sustainability, MDPI, vol. 13(22), pages 1-22, November.
    2. Przemysław Tkaczyk & Agnieszka Mocek-Płóciniak & Monika Skowrońska & Wiesław Bednarek & Sebastian Kuśmierz & Elżbieta Zawierucha, 2020. "The Mineral Fertilizer-Dependent Chemical Parameters of Soil Acidification under Field Conditions," Sustainability, MDPI, vol. 12(17), pages 1-11, September.
    3. Carmine Massarelli & Daniela Losacco & Marina Tumolo & Claudia Campanale & Vito Felice Uricchio, 2021. "Protection of Water Resources from Agriculture Pollution: An Integrated Methodological Approach for the Nitrates Directive 91–676-EEC Implementation," IJERPH, MDPI, vol. 18(24), pages 1-26, December.
    4. Ana Moldovan & Anamaria Iulia Török & Eniko Kovacs & Oana Cadar & Ionuț Cornel Mirea & Valer Micle, 2022. "Metal Contents and Pollution Indices Assessment of Surface Water, Soil, and Sediment from the Arieș River Basin Mining Area, Romania," Sustainability, MDPI, vol. 14(13), pages 1-21, June.
    5. Li, Wenchao & Guo, Shufang & Liu, Hongbin & Zhai, Limei & Wang, Hongyuan & Lei, Qiuliang, 2018. "Comprehensive environmental impacts of fertilizer application vary among different crops: Implications for the adjustment of agricultural structure aimed to reduce fertilizer use," Agricultural Water Management, Elsevier, vol. 210(C), pages 1-10.
    6. Philippe Etienne & Sylvain Diquelou & Marion Prudent & Christophe Salon & Anne Maillard & Alain Ourry, 2018. "Macro and Micronutrient Storage in Plants and Their Remobilization When Facing Scarcity: The Case of Drought," Agriculture, MDPI, vol. 8(1), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Waldemar Bojar & Wojciech Żarski & Renata Kuśmierek-Tomaszewska & Jacek Żarski & Piotr Baranowski & Jaromir Krzyszczak & Krzysztof Lamorski & Cezary Sławiński & Konstadinos Mattas & Christos Staboulis, 2023. "A Comprehensive Approach to Assess the Impact of Agricultural Production Factors on Selected Ecosystem Services in Poland," Resources, MDPI, vol. 12(9), pages 1-19, August.
    2. Claudia Campanale & Daniela Losacco & Mariangela Triozzi & Carmine Massarelli & Vito Felice Uricchio, 2022. "An Overall Perspective for the Study of Emerging Contaminants in Karst Aquifers," Resources, MDPI, vol. 11(11), pages 1-21, November.
    3. Muhammad Younas & Huasong Zou & Tasmia Laraib & Waseem Abbas & Muhammad Waqar Akhtar & Muhammad Naveed Aslam & Luqman Amrao & Shoukat Hayat & Tariq Abdul Hamid & Akhtar Hameed & Ghalib Ayaz Kachelo & , 2021. "The influence of vermicomposting on photosynthetic activity and productivity of maize (Zea mays L.) crop under semi-arid climate," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-9, August.
    4. Michail Tsangas & Ifigeneia Gavriel & Maria Doula & Flouris Xeni & Antonis A. Zorpas, 2020. "Life Cycle Analysis in the Framework of Agricultural Strategic Development Planning in the Balkan Region," Sustainability, MDPI, vol. 12(5), pages 1-15, February.
    5. Urs Feller & Stanislav Kopriva & Valya Vassileva, 2018. "Plant Nutrient Dynamics in Stressful Environments: Needs Interfere with Burdens," Agriculture, MDPI, vol. 8(7), pages 1-6, July.
    6. Sylwia Wesołowska & Barbara Futa & Magdalena Myszura & Agata Kobyłka, 2022. "Residual Effects of Different Cropping Systems on Physicochemical Properties and the Activity of Phosphatases of Soil," Agriculture, MDPI, vol. 12(5), pages 1-16, May.
    7. Wang, Tianyu & Wang, Zhenhua & Guo, Li & Zhang, Jinzhu & Li, Wenhao & He, Huaijie & Zong, Rui & Wang, Dongwang & Jia, Zhecheng & Wen, Yue, 2021. "Experiences and challenges of agricultural development in an artificial oasis: A review," Agricultural Systems, Elsevier, vol. 193(C).
    8. Yin, Gaofei & Wang, Xiaofei & Du, Huiying & Shen, Shizhou & Liu, Canran & Zhang, Keqiang & Li, Wenchao, 2019. "N2O and CO2 emissions, nitrogen use efficiency under biogas slurry irrigation: A field study of two consecutive wheat-maize rotation cycles in the North China Plain," Agricultural Water Management, Elsevier, vol. 212(C), pages 232-240.
    9. Kai Xu & Jiaogen Zhou & Qiuliang Lei & Wenbiao Wu & Guangxiong Mao, 2023. "Effect of Agricultural Structure Adjustment on Spatio-Temporal Patterns of Net Anthropogenic Nitrogen Inputs in the Pearl River Basin from 1990 to 2019," Land, MDPI, vol. 12(2), pages 1-18, January.
    10. Wenhao Song & Chunhui Ye, 2022. "Impact of the Cultivated-Land-Management Scale on Fertilizer Reduction—Empirical Evidence from the Countryside of China," Land, MDPI, vol. 11(8), pages 1-15, July.
    11. Maris Bertins & Paarn Paiste & Kristaps Makovskis & Linda Ansone-Bertina & Lauma Busa & Dagnija Lazdina & Andis Lazdins & Kalle Kirsimäe & Maris Klavins & Arturs Viksna, 2023. "Impact of Wood Ash and Sewage Sludge on Elemental Content in Hybrid Alder Clone," Sustainability, MDPI, vol. 15(9), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:14873-:d:969236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.