IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p14080-d956636.html
   My bibliography  Save this article

Response of Water Yield to Future Climate Change Based on InVEST and CMIP6—A Case Study of the Chaohu Lake Basin

Author

Listed:
  • Ting Zhang

    (School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
    Institute of Remote Sensing and Geographic Information System, Anhui Jianzhu University, Hefei 230601, China)

  • Qian Gao

    (School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China)

  • Huaming Xie

    (School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
    Institute of Remote Sensing and Geographic Information System, Anhui Jianzhu University, Hefei 230601, China)

  • Qianjiao Wu

    (School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
    Institute of Remote Sensing and Geographic Information System, Anhui Jianzhu University, Hefei 230601, China)

  • Yuwen Yu

    (School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China)

  • Chukun Zhou

    (School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China)

  • Zixian Chen

    (School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China)

  • Hanqing Hu

    (School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China)

Abstract

The Chaohu Lake Basin (CLB) is the main flow area of the Yangtze River–Huaihe River Water Transfer Project in Central China. It is important to quantitatively evaluate the water resources in the CLB and predict their response to future climate change. This study simulated and calibrated the water yield in the CLB from 2000 to 2019 based on InVEST. We also analyzed the influence factor on the water yield and predicted the water yield in future years with CMIP6 data. The results demonstrate that: (1) The InVEST water production module had good applicability in this study region. There was a strong linear relationship between the simulated water yield and the observed surface runoff ( y = 1.2363 x − 8.6038, R 2 = 0.868, p < 0.01); (2) The explanatory percentage of interaction between precipitation and land use/land cover for water yield in 2001, 2008, and 2016 reached 71%, 77%, and 85%, respectively, which were the two dominant factors affecting water yield in the CLB; and (3) The average annual water yield in the CLB increased under the SSP2-4.5, SSP3-7.0, and SSP5-8.5 future scenarios with increasing precipitation, increased with 71%, 139.8%, and 159.5% in 2100 compared with 2040, respectively. The overall trend of water production decreased with increases in carbon emission intensity.

Suggested Citation

  • Ting Zhang & Qian Gao & Huaming Xie & Qianjiao Wu & Yuwen Yu & Chukun Zhou & Zixian Chen & Hanqing Hu, 2022. "Response of Water Yield to Future Climate Change Based on InVEST and CMIP6—A Case Study of the Chaohu Lake Basin," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14080-:d:956636
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/14080/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/14080/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ravindra Kumar Verma & Sangeeta Verma & Surendra Kumar Mishra & Ashish Pandey, 2021. "SCS-CN-Based Improved Models for Direct Surface Runoff Estimation from Large Rainfall Events," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(7), pages 2149-2175, May.
    2. Widmoser, Peter, 2009. "A discussion on and alternative to the Penman-Monteith equation," Agricultural Water Management, Elsevier, vol. 96(4), pages 711-721, April.
    3. Hongjuan Zhang & Juan Feng & Zhicheng Zhang & Kang Liu & Xin Gao & Zidong Wang, 2020. "Regional Spatial Management Based on Supply–Demand Risk of Ecosystem Services—A Case Study of the Fenghe River Watershed," IJERPH, MDPI, vol. 17(11), pages 1-25, June.
    4. Mingxin Wen & Ting Zhang & Long Li & Longqian Chen & Sai Hu & Jia Wang & Weiqiang Liu & Yu Zhang & Lina Yuan, 2021. "Assessment of Land Ecological Security and Analysis of Influencing Factors in Chaohu Lake Basin, China from 1998–2018," Sustainability, MDPI, vol. 13(1), pages 1-28, January.
    5. ., 2020. "Background: the problem of and response to climate change," Chapters, in: Effective Global Carbon Markets, chapter 2, pages 12-30, Edward Elgar Publishing.
    6. Beibei Guo & Xiaobin Jin & Yelin Fang & Yinkang Zhou, 2020. "Evaluation of Sustainable Regional Development Combining Remote Sensing Data and Ecological Constraints: A Case Study of Chaohu Basin, China," Sustainability, MDPI, vol. 12(23), pages 1-20, November.
    7. Boumans, Roelof & Costanza, Robert & Farley, Joshua & Wilson, Matthew A. & Portela, Rosimeiry & Rotmans, Jan & Villa, Ferdinando & Grasso, Monica, 2002. "Modeling the dynamics of the integrated earth system and the value of global ecosystem services using the GUMBO model," Ecological Economics, Elsevier, vol. 41(3), pages 529-560, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoyu Li & Shudan Gong & Qingdong Shi & Yuan Fang, 2023. "A Review of Ecosystem Services Based on Bibliometric Analysis: Progress, Challenges, and Future Directions," Sustainability, MDPI, vol. 15(23), pages 1-18, November.
    2. Winkler, Ralph, 2006. "Valuation of ecosystem goods and services: Part 1: An integrated dynamic approach," Ecological Economics, Elsevier, vol. 59(1), pages 82-93, August.
    3. Kubiszewski, Ida & Costanza, Robert & Dorji, Lham & Thoennes, Philip & Tshering, Kuenga, 2013. "An initial estimate of the value of ecosystem services in Bhutan," Ecosystem Services, Elsevier, vol. 3(C), pages 11-21.
    4. Lopes, Rita & Videira, Nuno, 2017. "Modelling feedback processes underpinning management of ecosystem services: The role of participatory systems mapping," Ecosystem Services, Elsevier, vol. 28(PA), pages 28-42.
    5. Cui, Yi & Zhou, Yuliang & Jin, Juliang & Jiang, Shangming & Wu, Chengguo & Ning, Shaowei, 2023. "Spatiotemporal characteristics and obstacle factors identification of agricultural drought disaster risk: A case study across Anhui Province, China," Agricultural Water Management, Elsevier, vol. 289(C).
    6. Courard-Hauri, David, 2007. "Using Monte Carlo analysis to investigate the relationship between overconsumption and uncertain access to one's personal utility function," Ecological Economics, Elsevier, vol. 64(1), pages 152-162, October.
    7. David Doran & Tim O’Higgins, 2020. "Applications of a Novel Method of Ecosystem Services Assessment into Local Policy Making in the River Blackwater Estuary, Ireland," Sustainability, MDPI, vol. 12(21), pages 1-16, October.
    8. Sattler, Claudia & Loft, Lasse & Mann, Carsten & Meyer, Claas, 2018. "Methods in ecosystem services governance analysis: An introduction," Ecosystem Services, Elsevier, vol. 34(PB), pages 155-168.
    9. Xinmin Zhang & Ronald C Estoque & Hualin Xie & Yuji Murayama & Manjula Ranagalage, 2019. "Bibliometric analysis of highly cited articles on ecosystem services," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-16, February.
    10. Renyi Yang & Wanying Du & Zisheng Yang, 2021. "Spatiotemporal Evolution and Influencing Factors of Urban Land Ecological Security in Yunnan Province," Sustainability, MDPI, vol. 13(5), pages 1-17, March.
    11. Yi Shang & Dongyan Wang & Shuhan Liu & Hong Li, 2022. "Spatial-Temporal Variation and Mechanisms Causing Spatial Differentiation of Ecosystem Services in Ecologically Fragile Regions Based on Value Evaluation: A Case Study of Western Jilin, China," Land, MDPI, vol. 11(5), pages 1-21, April.
    12. Oliveira, Bruno M. & Boumans, Roelof & Fath, Brian D. & Harari, Joseph, 2022. "Socio-ecological systems modelling of coastal urban area under a changing climate – Case study for Ubatuba, Brazil," Ecological Modelling, Elsevier, vol. 468(C).
    13. Takuro Uehara & Yoko Nagase & Wayne Wakeland, 2016. "Integrating Economics and System Dynamics Approaches for Modelling an Ecological–Economic System," Systems Research and Behavioral Science, Wiley Blackwell, vol. 33(4), pages 515-531, July.
    14. Sutton, Paul C. & Costanza, Robert, 2002. "Global estimates of market and non-market values derived from nighttime satellite imagery, land cover, and ecosystem service valuation," Ecological Economics, Elsevier, vol. 41(3), pages 509-527, June.
    15. Costanza, Robert, 2020. "Valuing natural capital and ecosystem services toward the goals of efficiency, fairness, and sustainability," Ecosystem Services, Elsevier, vol. 43(C).
    16. Kolosz, B.W. & Athanasiadis, I.N. & Cadisch, G. & Dawson, T.P. & Giupponi, C. & Honzák, M. & Martinez-Lopez, J. & Marvuglia, A. & Mojtahed, V. & Ogutu, K.B.Z. & Van Delden, H. & Villa, F. & Balbi, S., 2018. "Conceptual advancement of socio-ecological modelling of ecosystem services for re-evaluating Brownfield land," Ecosystem Services, Elsevier, vol. 33(PA), pages 29-39.
    17. Yijie Zhang & Mingli Zhang & Haiju Hu & Xiaolong He, 2022. "Spatio-Temporal Characteristics of the Supply and Demand Coupling Coordination of Elderly Care Service Resources in China," IJERPH, MDPI, vol. 19(16), pages 1-21, August.
    18. Xilinayi Duolaiti & Alimujiang Kasimu & Rukeya Reheman & Yimuranzi Aizizi & Bohao Wei, 2023. "Assessment of Water Yield and Water Purification Services in the Arid Zone of Northwest China: The Case of the Ebinur Lake Basin," Land, MDPI, vol. 12(3), pages 1-20, February.
    19. Xiaoying Ouyang & Dongmei Chen & Shugui Zhou & Rui Zhang & Jinxin Yang & Guangcheng Hu & Youjun Dou & Qinhuo Liu, 2021. "A Slight Temperature Warming Trend Occurred over Lake Ontario from 2001 to 2018," Land, MDPI, vol. 10(12), pages 1-16, November.
    20. Ochoa, Vivian & Urbina-Cardona, Nicolás, 2017. "Tools for spatially modeling ecosystem services: Publication trends, conceptual reflections and future challenges," Ecosystem Services, Elsevier, vol. 26(PA), pages 155-169.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14080-:d:956636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.