IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i16p10441-d894705.html
   My bibliography  Save this article

Approach to an Equivalent Freight-Based Sustainable Joint-Quotation Strategy for Shipping Blockchain Alliance

Author

Listed:
  • Fa Zhang

    (Department of Electronic Business, South China University of Technology, Guangzhou 510006, China)

  • Yimiao Gu

    (Department of Electronic Business, South China University of Technology, Guangzhou 510006, China)

Abstract

To improve the sustainability of the shipping industry, a practice of establishing a new type of shipping alliance based on blockchain has been implemented. In this practice, the following question emerges: How will shipping lines achieve sustainable profit improvement? This paper focuses on the freight decision-making problem by constructing a multi-round joint-quotation strategy. This paper also demonstrates the potential impact of a joint quotation strategy on the blockchain-based open freight market from a theoretical perspective. The numerical experiment results show that, compared with the initial state, the joint quotation strategy can help to stabilize shipping demands and reduce the fluctuation in overall demands. In this strategy, the freight level needs to be high to maximize profits. However, part of the demands will be sacrificed as a result. Moreover, the optimal equilibrium solution under the joint quotation strategy is relatively vulnerable to changes in the competitive relationship among the members of an alliance. In addition, the joint quotation may also be resolutely resisted by the shipper due to monopoly risk, resulting in a major risk of a sharp reduction in demand. The findings in this paper offer a decision-making reference for the sustainable development of the shipping industry.

Suggested Citation

  • Fa Zhang & Yimiao Gu, 2022. "Approach to an Equivalent Freight-Based Sustainable Joint-Quotation Strategy for Shipping Blockchain Alliance," Sustainability, MDPI, vol. 14(16), pages 1-28, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10441-:d:894705
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/16/10441/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/16/10441/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Hoi-Lam & Wong, Collin Wai-Hung & Leung, Lawrence C. & Chung, Sai-Ho, 2020. "Facility sharing in business-to-business model: A real case study for container terminal operators in Hong Kong port," International Journal of Production Economics, Elsevier, vol. 221(C).
    2. Darcy W.E. Allen & Chris Berg & Sinclair Davidson & Mikayla Novak & Jason Potts, 2019. "International policy coordination for blockchain supply chains," Asia and the Pacific Policy Studies, Wiley Blackwell, vol. 6(3), pages 367-380, September.
    3. Sousa, Carlos M.P. & Bradley, Frank, 2008. "Antecedents of international pricing adaptation and export performance," Journal of World Business, Elsevier, vol. 43(3), pages 307-320, July.
    4. Du, Yuquan & Chen, Qiushuang & Quan, Xiongwen & Long, Lei & Fung, Richard Y.K., 2011. "Berth allocation considering fuel consumption and vessel emissions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1021-1037.
    5. Song, Dong-Ping & Dong, Jing-Xin, 2012. "Cargo routing and empty container repositioning in multiple shipping service routes," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1556-1575.
    6. Tan, Zhijia & Meng, Qiang & Wang, Fan & Kuang, Hai-bo, 2018. "Strategic integration of the inland port and shipping service for the ocean carrier," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 90-109.
    7. Ling Li & Honggeng Zhou, 2021. "A survey of blockchain with applications in maritime and shipping industry," Information Systems and e-Business Management, Springer, vol. 19(3), pages 789-807, September.
    8. Young-Gyun Ahn & Taeil Kim & Bo-Ram Kim & Min-Kyu Lee, 2022. "A Study on the Development Priority of Smart Shipping Items—Focusing on the Expert Survey," Sustainability, MDPI, vol. 14(11), pages 1-21, June.
    9. Sun, Yiqi & Wu, Zhengping & Zhu, Wanshan, 2022. "When do firms benefit from joint price and lead-time competition?," European Journal of Operational Research, Elsevier, vol. 302(2), pages 497-517.
    10. Liang Lu & Zhixin Liu & Xiangtong Qi, 2013. "Coordinated price quotation and production scheduling for uncertain order inquiries," IISE Transactions, Taylor & Francis Journals, vol. 45(12), pages 1293-1308.
    11. Choi, Tsan-Ming & Chung, Sai-Ho & Zhuo, Xiaopo, 2020. "Pricing with risk sensitive competing container shipping lines: Will risk seeking do more good than harm?," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 210-229.
    12. Zheng, Wei & Li, Bo & Song, Dong-Ping, 2017. "Effects of risk-aversion on competing shipping lines’ pricing strategies with uncertain demands," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 337-356.
    13. Miray Öner-Közen & Stefan Minner, 2018. "Dynamic pricing, leadtime quotation and due date based priority dispatching," International Journal of Production Research, Taylor & Francis Journals, vol. 56(15), pages 5118-5130, August.
    14. Chen, Rongying & Dong, Jing-Xin & Lee, Chung-Yee, 2016. "Pricing and competition in a shipping market with waste shipments and empty container repositioning," Transportation Research Part B: Methodological, Elsevier, vol. 85(C), pages 32-55.
    15. Chung-Yee Lee & Christopher S. Tang & Rui Yin & Jaehyung An, 2015. "Fractional Price Matching Policies Arising from the Ocean Freight Service Industry," Production and Operations Management, Production and Operations Management Society, vol. 24(7), pages 1118-1134, July.
    16. Zheng, Shiyuan & Luo, Meifeng, 2021. "Competition or cooperation? Ports’ strategies and welfare analysis facing shipping alliances," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    17. Zhi-Hua Hu & Ya-Jing Dong, 2022. "Evolutionary Game Models of Cooperative Strategies in Blockchain-Enabled Container Transport Chains," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 39(01), pages 1-32, February.
    18. Wang, Yang & Chen, Peng & Wu, Bing & Wan, Chengpeng & Yang, Zaili, 2022. "A trustable architecture over blockchain to facilitate maritime administration for MASS systems," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    19. Hee-sung Bae, 2021. "The Interaction Effect of Information Systems of Shipping and Logistics Firms and Managers’ Support for Blockchain Technology on Cooperation with Shippers for Sustainable Value Creation," Sustainability, MDPI, vol. 13(8), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong, Huiling & Zhang, Fa & Gu, Yimiao, 2021. "A Stackelberg game based two-stage framework to make decisions of freight rate for container shipping lines in the emerging blockchain-based market," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    2. Zheng, Wei & Li, Bo & Song, Dongping, 2022. "The optimal green strategies for competitive ocean carriers under potential regulation," European Journal of Operational Research, Elsevier, vol. 303(2), pages 840-856.
    3. Meng, Qiang & Zhao, Hui & Wang, Yadong, 2019. "Revenue management for container liner shipping services: Critical review and future research directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 280-292.
    4. Wang, Kelly Yujie & Wen, Yuan & Yip, Tsz Leung & Fan, Zuojun, 2021. "Carrier-shipper risk management and coordination in the presence of spot freight market," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    5. Najafi, Mehdi & Zolfagharinia, Hossein, 2021. "Pricing and quality setting strategy in maritime transportation: Considering empty repositioning and demand uncertainty," International Journal of Production Economics, Elsevier, vol. 240(C).
    6. Yang, Ruina & Yu, Mingzhu & Lee, Chung-Yee & Du, Yuquan, 2021. "Contracting in ocean transportation with empty container repositioning under asymmetric information," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    7. Zhuzhu Song & Wansheng Tang & Ruiqing Zhao, 2022. "Implications of economies of scale and scope for round-trip shipping canvassing with empty container repositioning," Annals of Operations Research, Springer, vol. 309(2), pages 485-515, February.
    8. Lee, Chung-Yee & Song, Dong-Ping, 2017. "Ocean container transport in global supply chains: Overview and research opportunities," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 442-474.
    9. Zheng, Jianfeng & Sun, Zhuo & Zhang, Fangjun, 2016. "Measuring the perceived container leasing prices in liner shipping network design with empty container repositioning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 123-140.
    10. Jeong, Yoonjea & Kim, Gwang, 2023. "Reliable design of container shipping network with foldable container facility disruption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    11. Wang, Shuaian & Yan, Ran & Qu, Xiaobo, 2019. "Development of a non-parametric classifier: Effective identification, algorithm, and applications in port state control for maritime transportation," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 129-157.
    12. Wang, Jian & Zhu, Wenbo, 2023. "Analyzing the development of competition and cooperation among ocean carriers considering the impact of carbon tax policy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    13. Wang, Shuaian & Wang, Hua & Meng, Qiang, 2015. "Itinerary provision and pricing in container liner shipping revenue management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 135-146.
    14. Choi, Tsan-Ming & Chung, Sai-Ho & Zhuo, Xiaopo, 2020. "Pricing with risk sensitive competing container shipping lines: Will risk seeking do more good than harm?," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 210-229.
    15. Song, Zhuzhu & Tang, Wansheng & Zhao, Ruiqing, 2019. "Encroachment and canvassing strategy in a sea-cargo service chain with empty container repositioning," European Journal of Operational Research, Elsevier, vol. 276(1), pages 175-186.
    16. Yadong Wang & Qiang Meng & Haibo Kuang, 2019. "Intercontinental Liner Shipping Service Design," Transportation Science, INFORMS, vol. 53(2), pages 344-364, March.
    17. Hyunwoo Park & Christian C. Blanco & Elliot Bendoly, 2022. "Vessel sharing and its impact on maritime operations and carbon emissions," Production and Operations Management, Production and Operations Management Society, vol. 31(7), pages 2925-2942, July.
    18. Sun, Xuting & Chung, Sai-Ho & Choi, Tsan-Ming & Sheu, Jiuh-Biing & Ma, Hoi Lam, 2020. "Combating lead-time uncertainty in global supply chain's shipment-assignment: Is it wise to be risk-averse?," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 406-434.
    19. Liu, Lu & Feng, Lipan & Jiang, Tao & Zhang, Qian, 2021. "The impact of supply chain competition on the introduction of clean development mechanisms," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    20. Wang, Bi & Chin, Kwai Sang & Su, Qin, 2022. "Prevention and adaptation to diversified risks in the seaport–dry port system under asymmetric risk behaviors: Invest earlier or wait?," Transport Policy, Elsevier, vol. 125(C), pages 11-36.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10441-:d:894705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.