IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i16p10226-d890639.html
   My bibliography  Save this article

Smart Waste Management and Classification Systems Using Cutting Edge Approach

Author

Listed:
  • Sehrish Munawar Cheema

    (Department of Computer Science, University of Management and Technology, Sialkot 51310, Pakistan
    These authors contributed equally to this work.)

  • Abdul Hannan

    (Department of Computer Science, University of Management and Technology, Sialkot 51310, Pakistan
    These authors contributed equally to this work.)

  • Ivan Miguel Pires

    (Instituto de Telecomunicações, Universidade da Beira Interior, 6200-001 Covilhã, Portugal
    These authors contributed equally to this work.)

Abstract

With a rapid increase in population, many problems arise in relation to waste dumps. These emits hazardous gases, which have negative effects on human health. The main issue is the domestic solid waste collection, management, and classification. According to studies, in America, nearly 75% of waste can be recycled, but there is a lack of a proper real-time waste-segregating mechanism, due to which only 30% of waste is being recycled at present. To maintain a clean and green environment, we need a smart waste management and classification system. To tackle the above-highlighted issue, we propose a real-time smart waste management and classification mechanism using a cutting-edge approach (SWMACM-CA). It uses the Internet of Things (IoT), deep learning (DL), and cutting-edge techniques to classify and segregate waste items in a dump area. Moreover, we propose a waste grid segmentation mechanism, which maps the pile at the waste yard into grid-like segments. A camera captures the waste yard image and sends it to an edge node to create a waste grid. The grid cell image segments act as a test image for trained deep learning, which can make a particular waste item prediction. The deep-learning algorithm used for this specific project is Visual Geometry Group with 16 layers (VGG16). The model is trained on a cloud server deployed at the edge node to minimize overall latency. By adopting hybrid and decentralized computing models, we can reduce the delay factor and efficiently use computational resources. The overall accuracy of the trained algorithm is over 90%, which is quite effective. Therefore, our proposed (SWMACM-CA) system provides more accurate results than existing state-of-the-art solutions, which is the core objective of this work.

Suggested Citation

  • Sehrish Munawar Cheema & Abdul Hannan & Ivan Miguel Pires, 2022. "Smart Waste Management and Classification Systems Using Cutting Edge Approach," Sustainability, MDPI, vol. 14(16), pages 1-21, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10226-:d:890639
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/16/10226/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/16/10226/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Donald R. Davis & Jonathan I. Dingel, 2019. "A Spatial Knowledge Economy," American Economic Review, American Economic Association, vol. 109(1), pages 153-170, January.
    2. Sergio Luis Nañez Alonso & Ricardo Francisco Reier Forradellas & Oriol Pi Morell & Javier Jorge-Vazquez, 2021. "Digitalization, Circular Economy and Environmental Sustainability: The Application of Artificial Intelligence in the Efficient Self-Management of Waste," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    3. Oxana Klimanova & Olga Illarionova & Karsten Grunewald & Elena Bukvareva, 2021. "Green Infrastructure, Urbanization, and Ecosystem Services: The Main Challenges for Russia’s Largest Cities," Land, MDPI, vol. 10(12), pages 1-21, November.
    4. Zahoor Ahmed & Muhammad Mansoor Asghar & Muhammad Nasir Malik & Kishwar Nawaz, 2020. "Moving towards a sustainable environment: The dynamic linkage between natural resources, human capital, urbanization, economic growth, and ecological footprint in China," Post-Print hal-03557938, HAL.
    5. David Lagakos, 2020. "Urban-Rural Gaps in the Developing World: Does Internal Migration Offer Opportunities?," Journal of Economic Perspectives, American Economic Association, vol. 34(3), pages 174-192, Summer.
    6. Zongguo Wen & Yiling Xie & Muhan Chen & Christian Doh Dinga, 2021. "China’s plastic import ban increases prospects of environmental impact mitigation of plastic waste trade flow worldwide," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    7. Christopher Anierobi & Cletus O. Obasi, 2021. "Urbanization and Rural-Urban Migration: Toward Involving the Church in Addressing Pro-Poor Urban Housing Challenges in Enugu, Nigeria," SAGE Open, , vol. 11(3), pages 21582440211, August.
    8. Su Shiung Lam & Aage K. O. Alstrup & Christian Sonne, 2020. "Denmark recycling plan will cut waste by two-thirds," Nature, Nature, vol. 584(7820), pages 192-192, August.
    9. Yong-sheng Wang, 2019. "The Challenges and Strategies of Food Security under Rapid Urbanization in China," Sustainability, MDPI, vol. 11(2), pages 1-11, January.
    10. Davis, Donald R. & Dingel, Jonathan I., 2020. "The comparative advantage of cities," Journal of International Economics, Elsevier, vol. 123(C).
    11. Ahmed, Zahoor & Asghar, Muhammad Mansoor & Malik, Muhammad Nasir & Nawaz, Kishwar, 2020. "Moving towards a sustainable environment: The dynamic linkage between natural resources, human capital, urbanization, economic growth, and ecological footprint in China," Resources Policy, Elsevier, vol. 67(C).
    12. Tan Yigitcanlar & Federico Cugurullo, 2020. "The Sustainability of Artificial Intelligence: An Urbanistic Viewpoint from the Lens of Smart and Sustainable Cities," Sustainability, MDPI, vol. 12(20), pages 1-24, October.
    13. Md. Arfanuzzaman & Bharat Dahiya, 2019. "Sustainable urbanization in Southeast Asia and beyond: Challenges of population growth, land use change, and environmental health," Growth and Change, Wiley Blackwell, vol. 50(2), pages 725-744, June.
    14. Ayaz Hussain & Umar Draz & Tariq Ali & Saman Tariq & Muhammad Irfan & Adam Glowacz & Jose Alfonso Antonino Daviu & Sana Yasin & Saifur Rahman, 2020. "Waste Management and Prediction of Air Pollutants Using IoT and Machine Learning Approach," Energies, MDPI, vol. 13(15), pages 1-22, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Yunpeng & Tian, Wenjuan & Mehmood, Usman & Zhang, Xiaoyu & Tariq, Salman, 2023. "How do natural resources, urbanization, and institutional quality meet with ecological footprints in the presence of income inequality and human capital in the next eleven countries?," Resources Policy, Elsevier, vol. 85(PA).
    2. Miao, Yang & Razzaq, Asif & Adebayo, Tomiwa Sunday & Awosusi, Abraham Ayobamiji, 2022. "Do renewable energy consumption and financial globalisation contribute to ecological sustainability in newly industrialized countries?," Renewable Energy, Elsevier, vol. 187(C), pages 688-697.
    3. Yung-Jaan Lee, 2022. "Hybrid Ecological Footprint of Taipei," Sustainability, MDPI, vol. 14(7), pages 1-16, April.
    4. Riza Radmehr & Samira Shayanmehr & Ernest Baba Ali & Elvis Kwame Ofori & Elżbieta Jasińska & Michał Jasiński, 2022. "Exploring the Nexus of Renewable Energy, Ecological Footprint, and Economic Growth through Globalization and Human Capital in G7 Economics," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    5. Wang, Shuhong & Tian, Wenqian & Lu, Binbin, 2023. "Impact of capital investment and industrial structure optimization from the perspective of "resource curse": Evidence from developing countries," Resources Policy, Elsevier, vol. 80(C).
    6. Aladejare, Samson Adeniyi, 2022. "Natural resource rents, globalisation and environmental degradation: New insight from 5 richest African economies," Resources Policy, Elsevier, vol. 78(C).
    7. Yugang He, 2022. "Renewable and Non-Renewable Energy Consumption and Trade Policy: Do They Matter for Environmental Sustainability?," Energies, MDPI, vol. 15(10), pages 1-17, May.
    8. Ayoub Zeraibi & Daniel Balsalobre-Lorente & Khurram Shehzad, 2021. "Testing the Environmental Kuznets Curve Hypotheses in Chinese Provinces: A Nexus between Regional Government Expenditures and Environmental Quality," IJERPH, MDPI, vol. 18(18), pages 1-16, September.
    9. Huaide Wen & Jun Dai, 2021. "The Change of Sources of Growth and Sustainable Development in China: Based on the Extended EKC Explanation," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    10. Yuming Fu & Yang Hao, 2015. "An Urban Accounting for Geographic Concentration of Skills and Welfare Inequality," ERSA conference papers ersa15p734, European Regional Science Association.
    11. Bai, Yiran & Tang, Shichao & Lu, Chunxian & Chen, Beier & Yan, Minghui, 2023. "Economic policy uncertainty and natural resource policy in the United States," Resources Policy, Elsevier, vol. 83(C).
    12. Jorge De la Roca & Gianmarco I P Ottaviano & Diego Puga, 2023. "City of Dreams," Journal of the European Economic Association, European Economic Association, vol. 21(2), pages 690-726.
    13. Wu, Guoyong & Gao, Yue & Feng, Yanchao, 2023. "Assessing the environmental effects of the supporting policies for mineral resource-exhausted cities in China," Resources Policy, Elsevier, vol. 85(PB).
    14. Geng, Yaxin & Rao, Pinyang & Sharif, Arshian, 2022. "Natural resource management and ecological sustainability: Dynamic role of social disparity and human development in G10 Economies," Resources Policy, Elsevier, vol. 79(C).
    15. Appiah, Michael & Li, Mingxing & Sehrish, Saba & Abaji, Emad Eddin, 2023. "Investigating the connections between innovation, natural resource extraction, and environmental pollution in OECD nations; examining the role of capital formation," Resources Policy, Elsevier, vol. 81(C).
    16. Achuo, Elvis & Nchofoung, Tii & Asongu, Simplice & Dinga, Gildas, 2021. "Unravelling the Mysteries of Underdevelopment in Africa," MPRA Paper 111556, University Library of Munich, Germany.
    17. Hossain, Md. Emran & Islam, Md. Sayemul & Bandyopadhyay, Arunava & Awan, Ashar & Hossain, Mohammad Razib & Rej, Soumen, 2022. "Mexico at the crossroads of natural resource dependence and COP26 pledge: Does technological innovation help?," Resources Policy, Elsevier, vol. 77(C).
    18. Zhou, Runyu & Abbasi, Kashif Raza & Salem, Sultan & Almulhim, Abdulaziz.I. & Alvarado, Rafael, 2022. "Do natural resources, economic growth, human capital, and urbanization affect the ecological footprint? A modified dynamic ARDL and KRLS approach," Resources Policy, Elsevier, vol. 78(C).
    19. David Jinkins & Farid Farrokhi, 2017. "Wage inequality and the Location of Cities," 2017 Meeting Papers 924, Society for Economic Dynamics.
    20. Abbasi, Kashif Raza & Adedoyin, Festus Fatai & Abbas, Jaffar & Hussain, Khadim, 2021. "The impact of energy depletion and renewable energy on CO2 emissions in Thailand: Fresh evidence from the novel dynamic ARDL simulation," Renewable Energy, Elsevier, vol. 180(C), pages 1439-1450.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10226-:d:890639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.