IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9723-d882545.html
   My bibliography  Save this article

Extended Assessment of Sprinkler Irrigation Uniformity in Greenhouses Using GIS and Hydraulic Modeling

Author

Listed:
  • Iñigo Barberena

    (Department of Engineering, Public University of Navarre, Campus de Arrosadía, 31006 Pamplona, Spain)

  • Miguel Ángel Campo-Bescós

    (ISFOOD—Institute for Innovation & Sustainable Development in Food Chain, Public University of Navarre, Campus de Arrosadía, 31006 Pamplona, Spain)

  • Javier Casalí

    (ISFOOD—Institute for Innovation & Sustainable Development in Food Chain, Public University of Navarre, Campus de Arrosadía, 31006 Pamplona, Spain)

Abstract

Traditionally, distribution uniformity has been obtained by using rain gauges, which makes it a very expensive process. This paper sought to create a simulation strategy using QGIS and EPANET, both free software, that allowed the simulation of the water application results of all the emitters of an irrigation installation. In this way, it was possible to obtain the geospatial representation of the applied water and finally to know the distribution uniformity in the whole installation. The simulation finally fulfilled its objective and was compared with a study of distribution uniformity with rain gauges. The biggest difference between the measured and simulated data was a difference of 5.76% among the sectors. The simulated uniformity was very similar to the measured uniformity, which allowed us to affirm that the proposed simulation methodology was adequate. We believe that the methodology proposed in this article could be very useful in improving the management of sprinkler irrigation systems, particularly those in which distribution uniformity is of special importance. These improvements in management can also result in savings in water and other inputs, which are becoming increasingly important in the current context of climate change and the reduction in the impact of agriculture on the environment. Finally, similar studies could be carried out with the same tools for other pressurized irrigation systems, such as sprinkler irrigation outside greenhouses and drip irrigation.

Suggested Citation

  • Iñigo Barberena & Miguel Ángel Campo-Bescós & Javier Casalí, 2022. "Extended Assessment of Sprinkler Irrigation Uniformity in Greenhouses Using GIS and Hydraulic Modeling," Sustainability, MDPI, vol. 14(15), pages 1-12, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9723-:d:882545
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9723/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9723/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Playan, E. & Zapata, N. & Faci, J.M. & Tolosa, D. & Lacueva, J.L. & Pelegrin, J. & Salvador, R. & Sanchez, I. & Lafita, A., 2006. "Assessing sprinkler irrigation uniformity using a ballistic simulation model," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 89-100, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maroufpoor, Saman & Shiri, Jalal & Maroufpoor, Eisa, 2019. "Modeling the sprinkler water distribution uniformity by data-driven methods based on effective variables," Agricultural Water Management, Elsevier, vol. 215(C), pages 63-73.
    2. Hui, Xin & Zheng, Yudong & Yan, Haijun, 2021. "Water distributions of low-pressure sprinklers as affected by the maize canopy under a centre pivot irrigation system," Agricultural Water Management, Elsevier, vol. 245(C).
    3. Sanchez, I. & Zapata, N. & Faci, J.M., 2010. "Combined effect of technical, meteorological and agronomical factors on solid-set sprinkler irrigation: I. Irrigation performance and soil water recharge in alfalfa and maize," Agricultural Water Management, Elsevier, vol. 97(10), pages 1571-1581, October.
    4. Zapata, N. & Playan, E. & Martinez-Cob, A. & Sanchez, I. & Faci, J.M. & Lecina, S., 2007. "From on-farm solid-set sprinkler irrigation design to collective irrigation network design in windy areas," Agricultural Water Management, Elsevier, vol. 87(2), pages 187-199, January.
    5. Sanchez, I. & Zapata, N. & Faci, J.M., 2010. "Combined effect of technical, meteorological and agronomical factors on solid-set sprinkler irrigation: II. Modifications of the wind velocity and of the water interception plane by the crop canopy," Agricultural Water Management, Elsevier, vol. 97(10), pages 1591-1601, October.
    6. Ouazaa, S. & Latorre, B. & Burguete, J. & Zapata, N., 2016. "Effect of intra-irrigation meteorological variability on seasonal center-pivot irrigation performance and corn yield," Agricultural Water Management, Elsevier, vol. 177(C), pages 201-214.
    7. Robles, O. & Latorre, B. & Zapata, N. & Burguete, J., 2019. "Self-calibrated ballistic model for sprinkler irrigation with a field experiments data base," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    8. Sanchez, I. & Faci, J.M. & Zapata, N., 2011. "The effects of pressure, nozzle diameter and meteorological conditions on the performance of agricultural impact sprinklers," Agricultural Water Management, Elsevier, vol. 102(1), pages 13-24.
    9. Mattar, Mohamed A. & Roy, Dilip Kumar & Al-Ghobari, Hussein M. & Dewidar, Ahmed Z., 2022. "Machine learning and regression-based techniques for predicting sprinkler irrigation's wind drift and evaporation losses," Agricultural Water Management, Elsevier, vol. 265(C).
    10. Jian Wang & Zhuoyang Song & Rui Chen & Ting Yang & Zuokun Tian, 2022. "Experimental Study on Droplet Characteristics of Rotating Sprinklers with Circular Nozzles and Diffuser," Agriculture, MDPI, vol. 12(7), pages 1-21, July.
    11. Al-Ghobari, Hussein M. & El-Marazky, Mohamed S. & Dewidar, Ahmed Z. & Mattar, Mohamed A., 2018. "Prediction of wind drift and evaporation losses from sprinkler irrigation using neural network and multiple regression techniques," Agricultural Water Management, Elsevier, vol. 195(C), pages 211-221.
    12. Maroufpoor, Saman & Maroufpoor, Eisa & Khaledi, Mohammad, 2019. "Effect of farmers’ management on movable sprinkler solid-set systems," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    13. Robles, O. & Playán, E. & Cavero, J. & Zapata, N., 2017. "Assessing low-pressure solid-set sprinkler irrigation in maize," Agricultural Water Management, Elsevier, vol. 191(C), pages 37-49.
    14. Zapata, N. & Robles, O. & Playán, E. & Paniagua, P. & Romano, C. & Salvador, R. & Montoya, F., 2018. "Low-pressure sprinkler irrigation in maize: Differences in water distribution above and below the crop canopy," Agricultural Water Management, Elsevier, vol. 203(C), pages 353-365.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9723-:d:882545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.