IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p8067-d854067.html
   My bibliography  Save this article

Pioneering Farmers Value Agronomic Performance of Cover Crops and Their Impacts on Soil and Environment

Author

Listed:
  • Pirjo Peltonen-Sainio

    (Natural Resources Institute Finland (Luke), FI-00790 Helsinki, Finland)

  • Lauri Jauhiainen

    (Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland)

  • Tuomas J. Mattila

    (Finnish Environment Institute (SYKE), Latokartanonkaari 11, FI-00790 Helsinki, Finland)

  • Juuso Joona

    (Tyynelä Farm, Etu-Aholantie 78, FI-55100 Imatra, Finland)

  • Tony Hydén

    (Koivumäki Farm, Lovisavägen 355, FI-07900 Loviisa, Finland)

  • Hannu Känkänen

    (Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland)

Abstract

Cover crops (CCs) have aroused a great deal of interest as a multifunctional measure to improve the sustainability of agriculture. Understanding farmers’ views are important for future farm-scale implementation. A farmer survey was carried out in Finland in 2021 with the aims to gather farmers’ views on agronomic performance of CCs, their environmental impacts and contribution to climate smart agriculture, and understand how farmers’ views on CCs differed depending on farm/farmer characteristics. The farmers’ sample was conventional and organic farms that had selected CCs as a registered measure in 2020. 6493 farmers were invited to answer a questionnaire with 18 statements (a Likert scale, 5 answer choices), and 1130 responded (17.4%). A Cochran–Mantel–Haenszel test was used to measure the strength of the association between ten characteristics of the respondents and 18 statements. Farmers considered CCs to have wide-ranging benefits for soil conditions. Only 21% of farmers agreed that CCs increase the need for nitrogen fertilizer use. 49% of farmers agreed that CCs reduce weed problems. Farmers mostly agreed (ca. 80%) that CCs reduce nutrient leaching and erosion. They were in general more uncertain about CCs’ contribution to climate change mitigation (53% agreed), adaptation (51%), and resilience (58%). In agri-environmental schemes subsidies for use of CCs should aim large-scale implementation with two important target groups: younger farmers (≤50 years) as they were slightly more skeptical than older ones and farmers with less diverse land use as they were more doubtful of benefits provided by CCs.

Suggested Citation

  • Pirjo Peltonen-Sainio & Lauri Jauhiainen & Tuomas J. Mattila & Juuso Joona & Tony Hydén & Hannu Känkänen, 2022. "Pioneering Farmers Value Agronomic Performance of Cover Crops and Their Impacts on Soil and Environment," Sustainability, MDPI, vol. 14(13), pages 1-18, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:8067-:d:854067
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/8067/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/8067/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sandra Wayman & Valentine Debray & Stephen Parry & Christophe David & Matthew R. Ryan, 2019. "Perspectives on Perennial Grain Crop Production among Organic and Conventional Farmers in France and the United States," Agriculture, MDPI, vol. 9(11), pages 1-17, November.
    2. Meyer, Nicolas & Bergez, Jacques-Eric & Constantin, Julie & Belleville, Paul & Justes, Eric, 2020. "Cover crops reduce drainage but not always soil water content due to interactions between rainfall distribution and management," Agricultural Water Management, Elsevier, vol. 231(C).
    3. Kathage, Jonas & Smit, Bert & Janssens, Bas & Haagsma, Wiepie & Adrados, Jose Luis, 2022. "How much is policy driving the adoption of cover crops? Evidence from four EU regions," Land Use Policy, Elsevier, vol. 116(C).
    4. Rattan Lal, 2015. "Restoring Soil Quality to Mitigate Soil Degradation," Sustainability, MDPI, vol. 7(5), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad A. Al-Ghamdi & Yilma Tadesse & Nuru Adgaba & Abdulaziz G. Alghamdi, 2021. "Soil Degradation and Restoration in Southwestern Saudi Arabia through Investigation of Soil Physiochemical Characteristics and Nutrient Status as Indicators," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    2. Sriroop Chaudhuri & Mimi Roy & Louis M. McDonald & Yves Emendack, 2023. "Land Degradation–Desertification in Relation to Farming Practices in India: An Overview of Current Practices and Agro-Policy Perspectives," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
    3. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    4. Grażyna Żukowska & Magdalena Myszura-Dymek & Szymon Roszkowski & Magdalena Olkiewicz, 2023. "Selected Properties of Soil-like Substrates Made from Mine Coal Waste and Their Effect on Plant Yields," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    5. Anna Kocira & Mariola Staniak & Marzena Tomaszewska & Rafał Kornas & Jacek Cymerman & Katarzyna Panasiewicz & Halina Lipińska, 2020. "Legume Cover Crops as One of the Elements of Strategic Weed Management and Soil Quality Improvement. A Review," Agriculture, MDPI, vol. 10(9), pages 1-41, September.
    6. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    7. Muhammad Faisal Saleem & Abdul Ghaffar & Muhammad Habib ur Rahman & Muhammad Imran & Rashid Iqbal & Walid Soufan & Subhan Danish & Rahul Datta & Karthika Rajendran & Ayman EL Sabagh, 2022. "Effect of Short-Term Zero Tillage and Legume Intercrops on Soil Quality, Agronomic and Physiological Aspects of Cotton under Arid Climate," Land, MDPI, vol. 11(2), pages 1-15, February.
    8. Jacek Pranagal & Sławomir Ligęza & Halina Smal & Joanna Gmitrowicz-Iwan, 2023. "Effects of Waste Application (Carboniferous Rock and Post-Fermentation Sludge) on Soil Quality," Land, MDPI, vol. 12(2), pages 1-20, February.
    9. Erika María López-García & Edgardo Torres-Trejo & Lucia López-Reyes & Ángel David Flores-Domínguez & Ricardo Darío Peña-Moreno & Jesús Francisco López-Olguín, 2020. "Estimation of soil erosion using USLE and GIS in the locality of Tzicatlacoyan, Puebla, México," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 15(1), pages 9-17.
    10. Ajay Kumar & Sushil Kumar & Komal & Nirala Ramchiary & Pardeep Singh, 2021. "Role of Traditional Ethnobotanical Knowledge and Indigenous Communities in Achieving Sustainable Development Goals," Sustainability, MDPI, vol. 13(6), pages 1-14, March.
    11. Amanuel B. Abraha & Eyob H. Tesfamariam & Wayne F. Truter, 2019. "Can a Blend of Amendments Be an Important Component of a Rehabilitation Strategy for Surface Coal Mined Soils?," Sustainability, MDPI, vol. 11(16), pages 1-17, August.
    12. Luciene Gomes & Silvio J. C. Simões & Eloi Lennon Dalla Nora & Eráclito Rodrigues de Sousa-Neto & Maria Cristina Forti & Jean Pierre H. B. Ometto, 2019. "Agricultural Expansion in the Brazilian Cerrado: Increased Soil and Nutrient Losses and Decreased Agricultural Productivity," Land, MDPI, vol. 8(1), pages 1-26, January.
    13. Maria Cristina Collivignarelli & Alessandro Abbà & Andrea Frattarola & Marco Carnevale Miino & Sergio Padovani & Ioannis Katsoyiannis & Vincenzo Torretta, 2019. "Legislation for the Reuse of Biosolids on Agricultural Land in Europe: Overview," Sustainability, MDPI, vol. 11(21), pages 1-22, October.
    14. Melese Baye Hailu & Surendra Kumar Mishra & Sanjay K. Jain, 2023. "Evaluation of Spatial-Temporal Variation of Soil Loss and Best Conservation Measures in an East Africa Catchment," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
    15. Jantiene E. M. Baartman & Joao Pedro Nunes & Hedwig van Delden & Roel Vanhout & Luuk Fleskens, 2022. "The Effects of Soil Improving Cropping Systems (SICS) on Soil Erosion and Soil Organic Carbon Stocks across Europe: A Simulation Study," Land, MDPI, vol. 11(6), pages 1-28, June.
    16. Mohamed Allam & Emanuele Radicetti & Mortadha Ben Hassine & Aftab Jamal & Zainul Abideen & Roberto Mancinelli, 2023. "A Meta-Analysis Approach to Estimate the Effect of Cover Crops on the Grain Yield of Succeeding Cereal Crops within European Cropping Systems," Agriculture, MDPI, vol. 13(9), pages 1-18, August.
    17. M Barka Outbakat & Khalil El Mejahed & Mohamed El Gharous & Kamal El Omari & Adnane Beniaich, 2022. "Effect of Phosphogypsum on Soil Physical Properties in Moroccan Salt-Affected Soils," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    18. Devkota, Krishna Prasad & Devkota, Mina & Rezaei, Meisam & Oosterbaan, Roland, 2022. "Managing salinity for sustainable agricultural production in salt-affected soils of irrigated drylands," Agricultural Systems, Elsevier, vol. 198(C).
    19. Eugene P. Law & Sandra Wayman & Christopher J. Pelzer & Steven W. Culman & Miguel I. Gómez & Antonio DiTommaso & Matthew R. Ryan, 2022. "Multi-Criteria Assessment of the Economic and Environmental Sustainability Characteristics of Intermediate Wheatgrass Grown as a Dual-Purpose Grain and Forage Crop," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    20. Tanja Srejić & Sanja Manojlović & Mikica Sibinović & Branislav Bajat & Ivan Novković & Marko V. Milošević & Ivana Carević & Mirjana Todosijević & Marko G. Sedlak, 2023. "Agricultural Land Use Changes as a Driving Force of Soil Erosion in the Velika Morava River Basin, Serbia," Agriculture, MDPI, vol. 13(4), pages 1-27, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:8067-:d:854067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.