IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i10p6195-d819340.html
   My bibliography  Save this article

Spatial Simulation of Land-Use Development of Feixi County, China, Based on Optimized Productive–Living–Ecological Functions

Author

Listed:
  • Yichen Zhang

    (School of Forestry and Landscape Architecture, Anhui Agricultural University, No. 130, Yangtze River West Road, Hefei 230036, China)

  • Chuntao Li

    (School of Forestry and Landscape Architecture, Anhui Agricultural University, No. 130, Yangtze River West Road, Hefei 230036, China)

  • Lang Zhang

    (Shanghai Academy of Landscape Architecture Science and Planning, No. 899, Longwu Road, Shanghai 200232, China)

  • Jinao Liu

    (School of Information and Computer, Anhui Agricultural University, No. 130, Yangtze River West Road, Hefei 230036, China)

  • Ruonan Li

    (School of Forestry and Landscape Architecture, Anhui Agricultural University, No. 130, Yangtze River West Road, Hefei 230036, China)

Abstract

Rural revitalization places higher demands on the productive–living–ecological (P-L-E) spaces of towns and cities. It is necessary, therefore, to identify, evaluate, and optimize P-L-E spaces to better guide spatial planning. Existing studies typically evaluate a single space, lacking a comprehensive consideration of whole-area integration. This study, therefore, developed a coupled spatial/developmental suitability evaluation system for Feixi County, Anhui Province, China, combining spatial quality evaluation, a coupled coordination model, and future land-use simulation (FLUS) model. The spatial quality of Feixi County in 2010, 2015, and 2020 was obtained by applying the evaluation system to the spatial development pattern. The results were analyzed and verified using the landscape pattern index and development suitability evaluation. The results showed the following: (1) The coupling coordination degree of the region increased from 0.131 to 0.372, changing from low to moderate coordination. (2) Based on the FLUS model to better capture the uncertainty and stochastic basis of the development in the study area. The kappa coefficient and Figure of Merit (FoM) index of the land-use simulation accuracy verification index were 0.7647 and 0.0508, respectively, and the logistic regression ROC values were above 0.75, thus meeting accuracy requirements. This demonstrated that the simulation model—based on a factor library of the evaluation of resource and environmental carrying capacity and suitability for development and construction—could better reflect future land-use changes. (3) The simulation showed that under the baseline development scenario, the area’s spatial layout is too concentrated in terms of construction land, ignoring P-L-E coordination. Under the ecological optimization scenario, high-quality ecological space is ensured, but other types of spaces are lacking. Under the comprehensive guidance scenario, lagging ecological space is optimized and P-L-E spatial development is enhanced through aggregation, clustering, concentration and integration. This way, the spatial quantity structure and distribution form can meet P-L-E spatial development needs in Feixi County. In this study, on the basis of scientific assessment of the current P-L-E space, the FLUS model was applied to carry out a scenario simulation according to different objectives. Moreover, based on the construction of the coupling system of human–nature system, the driving factors were improved to enhance the prediction accuracy of the FLUS model. This study’s findings can help improve the scientificity, flexibility and management efficiency of Feixi County’s P-L-E spatial layout, thereby supporting its sustainable development.

Suggested Citation

  • Yichen Zhang & Chuntao Li & Lang Zhang & Jinao Liu & Ruonan Li, 2022. "Spatial Simulation of Land-Use Development of Feixi County, China, Based on Optimized Productive–Living–Ecological Functions," Sustainability, MDPI, vol. 14(10), pages 1-33, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:6195-:d:819340
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/10/6195/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/10/6195/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lovell, Sarah Taylor & DeSantis, S'ra & Nathan, Chloe A. & Olson, Meryl Breton & Ernesto Méndez, V. & Kominami, Hisashi C. & Erickson, Daniel L. & Morris, Katlyn S. & Morris, William B., 2010. "Integrating agroecology and landscape multifunctionality in Vermont: An evolving framework to evaluate the design of agroecosystems," Agricultural Systems, Elsevier, vol. 103(5), pages 327-341, June.
    2. de Groot, Rudolf S. & Wilson, Matthew A. & Boumans, Roelof M. J., 2002. "A typology for the classification, description and valuation of ecosystem functions, goods and services," Ecological Economics, Elsevier, vol. 41(3), pages 393-408, June.
    3. Wilhelm, Jennifer A. & Smith, Richard G. & Jolejole-Foreman, Maria Christina & Hurley, Stephanie, 2020. "Resident and stakeholder perceptions of ecosystem services associated with agricultural landscapes in New Hampshire," Ecosystem Services, Elsevier, vol. 45(C).
    4. Wenting Zhang & Bo Li, 2021. "Research on an Analytical Framework for Urban Spatial Structural and Functional Optimisation: A Case Study of Beijing City, China," Land, MDPI, vol. 10(1), pages 1-19, January.
    5. Chao Wei & Qiaowen Lin & Li Yu & Hongwei Zhang & Sheng Ye & Di Zhang, 2021. "Research on Sustainable Land Use Based on Production–Living–Ecological Function: A Case Study of Hubei Province, China," Sustainability, MDPI, vol. 13(2), pages 1-21, January.
    6. Ranghui Wang & Qing Peng & Weidong Zhang & Wenfei Zhao & Chunwei Liu & Limin Zhou, 2022. "Ecohydrological Service Characteristics of Qilian Mountain Ecosystem in the Next 30 Years Based on Scenario Simulation," Sustainability, MDPI, vol. 14(3), pages 1-14, February.
    7. Ustaoglu, E. & Aydınoglu, A.C., 2020. "Suitability evaluation of urban construction land in Pendik district of Istanbul, Turkey," Land Use Policy, Elsevier, vol. 99(C).
    8. Liyan Wang & Feixue Li & Yuan Gong & Penghui Jiang & Qiuhao Huang & Wuyang Hong & Dong Chen, 2016. "A Quality Assessment of National Territory Use at the City Level: A Planning Review Perspective," Sustainability, MDPI, vol. 8(2), pages 1-24, February.
    9. Xia Xu & Mengxi Guan & Honglei Jiang & Lingfei Wang, 2019. "Dynamic Simulation of Land Use Change of the Upper and Middle Streams of the Luan River, Northern China," Sustainability, MDPI, vol. 11(18), pages 1-15, September.
    10. Mansour, Shawky & Al-Belushi, Mohammed & Al-Awadhi, Talal, 2020. "Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques," Land Use Policy, Elsevier, vol. 91(C).
    11. Hualin Xie, 2017. "Towards Sustainable Land Use in China: A Collection of Empirical Studies," Sustainability, MDPI, vol. 9(11), pages 1-9, November.
    12. Tian, Fenghao & Li, Mingyu & Han, Xulong & Liu, Hui & Mo, Boxian, 2020. "A Production–Living–Ecological Space Model for Land-Use Optimisation: A case study of the core Tumen River region in China," Ecological Modelling, Elsevier, vol. 437(C).
    13. Zhiheng Yang & Shaoxing Li & Dongqi Sun & Chenxi Li & Jiahui Wu, 2022. "Intensive Evaluation and High-Quality Redevelopment of Enterprise Land Use: A Case Study in China," Land, MDPI, vol. 11(3), pages 1-17, March.
    14. Jingeng Huo & Zhenqin Shi & Wenbo Zhu & Hua Xue & Xin Chen, 2022. "A Multi-Scenario Simulation and Optimization of Land Use with a Markov–FLUS Coupling Model: A Case Study in Xiong’an New Area, China," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
    15. Qian Sun & Mingjie Wu & Peiyu Du & Wei Qi & Xinyang Yu, 2022. "Spatial Layout Optimization and Simulation of Cultivated Land Based on the Life Community Theory in a Mountainous and Hilly Area of China," Sustainability, MDPI, vol. 14(7), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zuo & Li, Jiaming, 2022. "Spatial suitability and multi-scenarios for land use: Simulation and policy insights from the production-living-ecological perspective," Land Use Policy, Elsevier, vol. 119(C).
    2. Han, Bo & Jin, Xiaobin & Sun, Rui & Li, Hanbing & Liang, Xinyuan & Zhou, Yinkang, 2023. "Understanding land-use sustainability with a systematical framework: An evaluation case of China," Land Use Policy, Elsevier, vol. 132(C).
    3. Yangyang Yuan & Yuchen Yang & Ruijun Wang & Yuning Cheng, 2022. "Predicting Rural Ecological Space Boundaries in the Urban Fringe Area Based on Bayesian Network: A Case Study in Nanjing, China," Land, MDPI, vol. 11(11), pages 1-24, October.
    4. Song, Xiaoqing & Wang, Xiong & Hu, Shougeng & Xiao, Renbin & Scheffran, Jürgen, 2022. "Functional transition of cultivated ecosystems: Underlying mechanisms and policy implications in China," Land Use Policy, Elsevier, vol. 119(C).
    5. Yu Chen & Shuangshuang Liu & Wenbo Ma & Qian Zhou, 2023. "Assessment of the Carrying Capacity and Suitability of Spatial Resources and the Environment and Diagnosis of Obstacle Factors in the Yellow River Basin," IJERPH, MDPI, vol. 20(4), pages 1-26, February.
    6. Lanyi Wei & Yanjun Zhang & Lingzhi Wang & Zilang Cheng & Xuying Wu, 2022. "Obstacle Indicators Diagnosis and Advantage Functions Zoning Optimization Based on “Production-Living-Ecological” Functions of National Territory Space in Jilin Province," Sustainability, MDPI, vol. 14(7), pages 1-23, April.
    7. Yu Chen & Mengke Zhu, 2022. "Spatiotemporal Evolution and Driving Mechanism of “Production-Living-Ecology” Functions in China: A Case of Both Sides of Hu Line," IJERPH, MDPI, vol. 19(6), pages 1-22, March.
    8. Yuchun Wang & Xiaoyan Lu & Jie Zhang & Yunfeng Ruan & Bingyi Wang, 2023. "Spatiotemporal Distributions of Multiple Land Use Functions and Their Coupling Coordination Degree in the Yangtze River Delta Urban Agglomeration, China," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    9. Yangcheng Hu & Yi Liu & Changyan Li, 2022. "Multi-Scenario Simulation of Land Use Change and Ecosystem Service Value in the Middle Reaches of Yangtze River Urban Agglomeration," Sustainability, MDPI, vol. 14(23), pages 1-19, November.
    10. Chao Wei & Qiaowen Lin & Li Yu & Hongwei Zhang & Sheng Ye & Di Zhang, 2021. "Research on Sustainable Land Use Based on Production–Living–Ecological Function: A Case Study of Hubei Province, China," Sustainability, MDPI, vol. 13(2), pages 1-21, January.
    11. Dongbing Li & Yao Chang & Zibibula Simayi & Shengtian Yang, 2022. "Multi-Scenario Dynamic Simulation of Urban Agglomeration Development on the Northern Slope of the Tianshan Mountains in Xinjiang, China, with the Goal of High-Quality Urban Construction," Sustainability, MDPI, vol. 14(11), pages 1-19, June.
    12. Zhuxiao Yu & Erqi Xu & Hongqi Zhang & Erping Shang, 2020. "Spatio-Temporal Coordination and Conflict of Production-Living-Ecology Land Functions in the Beijing-Tianjin-Hebei Region, China," Land, MDPI, vol. 9(5), pages 1-22, May.
    13. Cornelis Leeuwen & Jos Frijns & Annemarie Wezel & Frans Ven, 2012. "City Blueprints: 24 Indicators to Assess the Sustainability of the Urban Water Cycle," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2177-2197, June.
    14. Stefan Liehr & Julia Röhrig & Marion Mehring & Thomas Kluge, 2017. "How the Social-Ecological Systems Concept Can Guide Transdisciplinary Research and Implementation: Addressing Water Challenges in Central Northern Namibia," Sustainability, MDPI, vol. 9(7), pages 1-19, June.
    15. Yanzi Wang & Chunming Wu & Yongfeng Gong & Zhen Zhu, 2021. "Can Adaptive Governance Promote Coupling Social-Ecological Systems? Evidence from the Vulnerable Ecological Region of Northwestern China," Sustainability, MDPI, vol. 13(20), pages 1-19, October.
    16. Breffle, William S. & Muralidharan, Daya & Donovan, Richard P. & Liu, Fangming & Mukherjee, Amlan & Jin, Yongliang, 2013. "Socioeconomic evaluation of the impact of natural resource stressors on human-use services in the Great Lakes environment: A Lake Michigan case study," Resources Policy, Elsevier, vol. 38(2), pages 152-161.
    17. Comino, E. & Ferretti, V., 2016. "Indicators-based spatial SWOT analysis: supporting the strategic planning and management of complex territorial systems," LSE Research Online Documents on Economics 64142, London School of Economics and Political Science, LSE Library.
    18. Jansson, Åsa, 2013. "Reaching for a sustainable, resilient urban future using the lens of ecosystem services," Ecological Economics, Elsevier, vol. 86(C), pages 285-291.
    19. P. Hlaváčková & D. Šafařík, 2016. "Quantification of the utility value of the recreational function of forests from the aspect of valuation practice," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 62(8), pages 345-356.
    20. Bolaños-Valencia, Ingrid & Villegas-Palacio, Clara & López-Gómez, Connie Paola & Berrouet, Lina & Ruiz, Aura, 2019. "Social perception of risk in socio-ecological systems. A qualitative and quantitative analysis," Ecosystem Services, Elsevier, vol. 38(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:6195-:d:819340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.