IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i10p5922-d814903.html
   My bibliography  Save this article

Joining Sustainable Design and Internet of Things Technologies on Campus: The IPVC Smartbottle Practical Case

Author

Listed:
  • Ana Filomena Curralo

    (Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua da Escola Industrial e Comercial de Nun’Alvares, 4900-347 Viana do Castelo, Portugal
    ID+—Instituto de Investigação em Design, Media e Cultura, 3810-193 Aveiro, Portugal)

  • Sérgio Ivan Lopes

    (Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua da Escola Industrial e Comercial de Nun’Alvares, 4900-347 Viana do Castelo, Portugal
    ADiT-LAB, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial Nun’Álvares, 4900-347 Viana do Castelo, Portugal
    IT—Instituto de Telecomunicações, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal)

  • João Mendes

    (Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua da Escola Industrial e Comercial de Nun’Alvares, 4900-347 Viana do Castelo, Portugal)

  • António Curado

    (Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua da Escola Industrial e Comercial de Nun’Alvares, 4900-347 Viana do Castelo, Portugal
    ProMetheus, Instituto Politécnico de Viana do Castelo, Rua da Escola Industrial e Comercial de Nun’Alvares, 4900-347 Viana do Castelo, Portugal)

Abstract

Higher education institutions (HEIs) are favored environments for the implementation of technological solutions that accelerate the generation of smart campi, given the dynamic ecosystem they create based on the involvement of inspired and motivated human resources (students, professors, and researchers), moving around in an atmosphere of advanced digital infrastructures and services. Moreover, HEIs have, in their mission, not only the creation of integrated knowledge through Research and Development (R&D) activities but also solving societal problems that address the academic community expectations concerning environmental issues, contributing, therefore, towards a greener society embodied within the United Nations (UN) Sustainable Development Goals (SDGs). This article addresses the design and implementation of a Smartbottle Ecosystem in which an interactive and reusable water bottle communicates with an intelligent water refill station, both integrated by the Internet of Things (IoT) and Information and Communications Technologies (ICT), to eliminate the use of single-use plastic water bottles in the premises of the Polytechnical Institute of Viana do Castelo (IPVC), an HEI with nearly 6000 students. Three main contributions were identified in this research: (i) the proposal of a novel methodology based on the association of Design Thinking and Participatory Design as the basis for Sustainable Design; (ii) the design and development of an IoT-enabled smartbottle prototype; and (iii) the usability evaluation of the proposed prototype. The adopted methodology is rooted in Design Thinking and mixes it with a Participatory Design approach, including the end-user opinion throughout the Smartbottle Ecosystem design process, not only for the product design requirements but also for its specification. By promoting a participatory solution tailored to the IPVC academic community, recycled plastic has been identified as the preferential material and a marine mammal was selected for the smartbottle shape, in the process of developing a solution to replace the single-use plastic bottles.

Suggested Citation

  • Ana Filomena Curralo & Sérgio Ivan Lopes & João Mendes & António Curado, 2022. "Joining Sustainable Design and Internet of Things Technologies on Campus: The IPVC Smartbottle Practical Case," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:5922-:d:814903
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/10/5922/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/10/5922/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guerrieri, M. & La Gennusa, M. & Peri, G. & Rizzo, G. & Scaccianoce, G., 2019. "University campuses as small-scale models of cities: Quantitative assessment of a low carbon transition path," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agnieszka Jaszczak & Ewelina Pochodyła & Katarina Kristianova & Natalia Małkowska & Jan K. Kazak, 2021. "Redefinition of Park Design Criteria as a Result of Analysis of Well-Being and Soundscape: The Case Study of the Kortowo Park (Poland)," IJERPH, MDPI, vol. 18(6), pages 1-22, March.
    2. Schüppler, Simon & Fleuchaus, Paul & Duchesne, Antoine & Blum, Philipp, 2022. "Cooling supply costs of a university campus," Energy, Elsevier, vol. 249(C).
    3. Pedro Martins & Sérgio Ivan Lopes & António Miguel Rosado da Cruz & António Curado, 2021. "Towards a Smart & Sustainable Campus: An Application-Oriented Architecture to Streamline Digitization and Strengthen Sustainability in Academia," Sustainability, MDPI, vol. 13(6), pages 1-25, March.
    4. Francisco Maciá Pérez & José Vicente Berna Martínez & Iren Lorenzo Fonseca, 2021. "Modelling and Implementing Smart Universities: An IT Conceptual Framework," Sustainability, MDPI, vol. 13(6), pages 1-26, March.
    5. Kourgiozou, Vasiliki & Commin, Andrew & Dowson, Mark & Rovas, Dimitrios & Mumovic, Dejan, 2021. "Scalable pathways to net zero carbon in the UK higher education sector: A systematic review of smart energy systems in university campuses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    6. Li, Ruishi & Zhao, Rongqin & Xie, Zhixiang & Xiao, Liangang & Chuai, Xiaowei & Feng, Mengyu & Zhang, Huifang & Luo, Huili, 2022. "Water–energy–carbon nexus at campus scale: Case of North China University of Water Resources and Electric Power," Energy Policy, Elsevier, vol. 166(C).
    7. Marvuglia, Antonino & Havinga, Lisanne & Heidrich, Oliver & Fonseca, Jimeno & Gaitani, Niki & Reckien, Diana, 2020. "Advances and challenges in assessing urban sustainability: an advanced bibliometric review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    8. Md. Salman Islam & Gengyuan Liu & Duo Xu & Yu Chen & Hui Li & Caocao Chen, 2023. "University-Campus-Based Zero-Carbon Action Plans for Accelerating the Zero-Carbon City Transition," Sustainability, MDPI, vol. 15(18), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:5922-:d:814903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.