IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i6p3312-d518857.html
   My bibliography  Save this article

Specific and Cumulative Exhaust Gas Emissions in Micro-Scale Generators Fueled by Syngas from Biomass Gasification

Author

Listed:
  • Marco Puglia

    (Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Pietro Vivarelli, 10-41125 Modena, Italy)

  • Nicolò Morselli

    (Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Pietro Vivarelli, 10-41125 Modena, Italy)

  • Simone Pedrazzi

    (Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Pietro Vivarelli, 10-41125 Modena, Italy)

  • Paolo Tartarini

    (Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Pietro Vivarelli, 10-41125 Modena, Italy
    Centro Interdipartimentale INTERMECH, University of Modena and Reggio Emilia, Via Pietro Vivarelli, 2-41125 Modena, Italy)

  • Giulio Allesina

    (Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Pietro Vivarelli, 10-41125 Modena, Italy
    Centro Interdipartimentale INTERMECH, University of Modena and Reggio Emilia, Via Pietro Vivarelli, 2-41125 Modena, Italy)

  • Alberto Muscio

    (Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Pietro Vivarelli, 10-41125 Modena, Italy
    Centro Interdipartimentale INTERMECH, University of Modena and Reggio Emilia, Via Pietro Vivarelli, 2-41125 Modena, Italy)

Abstract

Climate change, environmental degradation, and biodiversity loss are prompting production systems to shift from a fossil-based economy to a circular bio-based one. In this context, biomass gasification is a promising alternative to fossil fuels that can contribute to power generation in rural communities and remote areas as well as provide a sustainable source of energy for developed countries. In this work, exhaust gas emissions (CO, NOx, and SO 2 ) of two syngas-fueled micro-scale generators were measured. The first system is a commercial biomass gasifier genset, whereas the second is composed of a laboratory-scale gasifier prototype and a portable petrol generator. For this second facility, emissions were measured both running on gasoline and on syngas. The comparison was performed both on the pollutant concentration and on their cumulative amount. This comparison was made possible by calculating the exhaust gas flow by knowing the combustion stoichiometry and fuel consumption. The results showed a much lower pollutant concentration running on syngas compared to gasoline. In particular, considering the best configurations, every cubic meter of exhaust gas released running on syngas contains about 20 times less CO and almost one-third less NOx compared to gasoline. Moreover, the cumulative amount of emissions released was also considerably lower due to the lower exhaust gas flow (about 25%) released running on syngas.

Suggested Citation

  • Marco Puglia & Nicolò Morselli & Simone Pedrazzi & Paolo Tartarini & Giulio Allesina & Alberto Muscio, 2021. "Specific and Cumulative Exhaust Gas Emissions in Micro-Scale Generators Fueled by Syngas from Biomass Gasification," Sustainability, MDPI, vol. 13(6), pages 1-13, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3312-:d:518857
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/6/3312/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/6/3312/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohd Alsaleh & Muhammad Mansur Abdulwakil & Abdul Samad Abdul-Rahim, 2021. "Does Social Businesses Development Affect Bioenergy Industry Growth under the Pathway of Sustainable Development?," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    2. Li, Lanyu & Yao, Zhiyi & You, Siming & Wang, Chi-Hwa & Chong, Clive & Wang, Xiaonan, 2019. "Optimal design of negative emission hybrid renewable energy systems with biochar production," Applied Energy, Elsevier, vol. 243(C), pages 233-249.
    3. Blakemore, F. B. & Davies, C. & Isaac, J. G., 2001. "Effects of changes in the UK energy-demand and environmental legislation on atmospheric pollution by oxides of nitrogen and black smoke," Applied Energy, Elsevier, vol. 68(1), pages 83-117, January.
    4. Belgiorno, Giacomo & Dimitrakopoulos, Nikolaos & Di Blasio, Gabriele & Beatrice, Carlo & Tunestål, Per & Tunér, Martin, 2018. "Effect of the engine calibration parameters on gasoline partially premixed combustion performance and emissions compared to conventional diesel combustion in a light-duty Euro 6 engine," Applied Energy, Elsevier, vol. 228(C), pages 2221-2234.
    5. Md. Emdadul Hoque & Fazlur Rashid & Muhammad Aziz, 2021. "Gasification and Power Generation Characteristics of Rice Husk, Sawdust, and Coconut Shell Using a Fixed-Bed Downdraft Gasifier," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    6. Hafiz Muhammad Uzair Ayub & Sang Jin Park & Michael Binns, 2020. "Biomass to Syngas: Modified Non-Stoichiometric Thermodynamic Models for the Downdraft Biomass Gasification," Energies, MDPI, vol. 13(21), pages 1-17, October.
    7. Hafiz Muhammad Uzair Ayub & Sang Jin Park & Michael Binns, 2020. "Biomass to Syngas: Modified Stoichiometric Thermodynamic Models for Downdraft Biomass Gasification," Energies, MDPI, vol. 13(20), pages 1, October.
    8. Renzi, Massimiliano & Patuzzi, Francesco & Baratieri, Marco, 2017. "Syngas feed of micro gas turbines with steam injection: Effects on performance, combustion and pollutants formation," Applied Energy, Elsevier, vol. 206(C), pages 697-707.
    9. Javier Monsalve-Serrano & Giacomo Belgiorno & Gabriele Di Blasio & María Guzmán-Mendoza, 2020. "1D Simulation and Experimental Analysis on the Effects of the Injection Parameters in Methane–Diesel Dual-Fuel Combustion," Energies, MDPI, vol. 13(14), pages 1-13, July.
    10. Elsner, Witold & Wysocki, Marian & Niegodajew, Paweł & Borecki, Roman, 2017. "Experimental and economic study of small-scale CHP installation equipped with downdraft gasifier and internal combustion engine," Applied Energy, Elsevier, vol. 202(C), pages 213-227.
    11. Chaves, Luiz Inácio & da Silva, Marcelo José & de Souza, Samuel Nelson Melegari & Secco, Deonir & Rosa, Helton Aparecido & Nogueira, Carlos Eduardo Camargo & Frigo, Elisandro Pires, 2016. "Small-scale power generation analysis: Downdraft gasifier coupled to engine generator set," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 491-498.
    12. Mueller, Charles J. & Nilsen, Christopher W. & Ruth, Daniel J. & Gehmlich, Ryan K. & Pickett, Lyle M. & Skeen, Scott A., 2017. "Ducted fuel injection: A new approach for lowering soot emissions from direct-injection engines," Applied Energy, Elsevier, vol. 204(C), pages 206-220.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Savelii Kukharets & Gennadii Golub & Marek Wrobel & Olena Sukmaniuk & Krzysztof Mudryk & Taras Hutsol & Algirdas Jasinskas & Marcin Jewiarz & Jonas Cesna & Iryna Horetska, 2022. "A Theoretical Model of the Gasification Rate of Biomass and Its Experimental Confirmation," Energies, MDPI, vol. 15(20), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander N. Kozlov & Nikita V. Tomin & Denis N. Sidorov & Electo E. S. Lora & Victor G. Kurbatsky, 2020. "Optimal Operation Control of PV-Biomass Gasifier-Diesel-Hybrid Systems Using Reinforcement Learning Techniques," Energies, MDPI, vol. 13(10), pages 1-20, May.
    2. Fariha Kanwal & Ashfaq Ahmed & Farrukh Jamil & Sikander Rafiq & H. M. Uzair Ayub & Moinuddin Ghauri & M. Shahzad Khurram & Shahid Munir & Abrar Inayat & Muhammad S. Abu Bakar & Surendar Moogi & Su Shi, 2021. "Co-Combustion of Blends of Coal and Underutilised Biomass Residues for Environmental Friendly Electrical Energy Production," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    3. Valentina Segneri & Jean Henry Ferrasse & Antonio Trinca & Giorgio Vilardi, 2022. "An Overview of Waste Gasification and Syngas Upgrading Processes," Energies, MDPI, vol. 15(17), pages 1-7, September.
    4. Rafail Isemin & Fouzi Tabet & Artemy Nebyvaev & Vadim Kokh-Tatarenko & Sergey Kuzmin & Oleg Milovanov & Dmitry Klimov & Alexander Mikhalev & Semen Dobkin & Yuri Zhulaev, 2022. "Prediction of the Behavior of Sunflower Husk Ash after Its Processing by Various Torrefaction Methods," Energies, MDPI, vol. 15(20), pages 1-14, October.
    5. Zhang, Jinchun & Hou, Jinxiu & Zhang, Zichuan, 2022. "Real-time identification of out-of-control and instability in process parameter for gasification process: Integrated application of control chart and kalman filter," Energy, Elsevier, vol. 238(PB).
    6. M. Shahabuddin & Sankar Bhattacharya, 2021. "Co-Gasification Characteristics of Coal and Biomass Using CO 2 Reactant under Thermodynamic Equilibrium Modelling," Energies, MDPI, vol. 14(21), pages 1-12, November.
    7. María Pilar González-Vázquez & Fernando Rubiera & Covadonga Pevida & Daniel T. Pio & Luís A.C. Tarelho, 2021. "Thermodynamic Analysis of Biomass Gasification Using Aspen Plus: Comparison of Stoichiometric and Non-Stoichiometric Models," Energies, MDPI, vol. 14(1), pages 1-17, January.
    8. Silva, Isabelly P. & Lima, Rafael M.A. & Santana, Hortência E.P. & Silva, Gabriel F. & Ruzene, Denise S. & Silva, Daniel P., 2022. "Development of a semi-empirical model for woody biomass gasification based on stoichiometric thermodynamic equilibrium model," Energy, Elsevier, vol. 241(C).
    9. Huchon, Valentin & Pinta, François & Commandré, Jean-Michel & Van De Steene, Laurent, 2020. "How electrical engine power load and feedstock moisture content affect the performance of a fixed bed gasification genset," Energy, Elsevier, vol. 197(C).
    10. Michael Binns & Hafiz Muhammad Uzair Ayub, 2021. "Model Reduction Applied to Empirical Models for Biomass Gasification in Downdraft Gasifiers," Sustainability, MDPI, vol. 13(21), pages 1-14, November.
    11. Díaz González, Carlos A. & Pacheco Sandoval, Leonardo, 2020. "Sustainability aspects of biomass gasification systems for small power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Jacek Grams, 2022. "Upgrading of Lignocellulosic Biomass to Hydrogen-Rich Gas," Energies, MDPI, vol. 16(1), pages 1-5, December.
    13. Zhuang, Rui & Wang, Xiaonan & Guo, Miao & Zhao, Yingru & El-Farra, Nael H. & Palazoglu, Ahmet, 2020. "Waste-to-hydrogen: Recycling HCl to produce H2 and Cl2," Applied Energy, Elsevier, vol. 259(C).
    14. Wang, Qingxiang & Chen, Zhichao & Han, Hui & Zeng, Lingyan & Li, Zhengqi, 2019. "Experimental characterization of anthracite combustion and NOx emission for a 300-MWe down-fired boiler with a novel combustion system: Influence of primary and vent air distributions," Applied Energy, Elsevier, vol. 238(C), pages 1551-1562.
    15. Cocco Mariani, Viviana & Hennings Och, Stephan & dos Santos Coelho, Leandro & Domingues, Eric, 2019. "Pressure prediction of a spark ignition single cylinder engine using optimized extreme learning machine models," Applied Energy, Elsevier, vol. 249(C), pages 204-221.
    16. Yilmaz, Harun & Yilmaz, Ilker, 2019. "Combustion and emission characteristics of premixed CNG/H2/CO/CO2 blending synthetic gas flames in a combustor with variable geometric swirl number," Energy, Elsevier, vol. 172(C), pages 117-133.
    17. Lee, Jechan & Kim, Soosan & You, Siming & Park, Young-Kwon, 2023. "Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    18. Li, C.Y. & Deethayat, T. & Wu, J.Y. & Kiatsiriroat, T. & Wang, R.Z., 2018. "Simulation and evaluation of a biomass gasification-based combined cooling, heating, and power system integrated with an organic Rankine cycle," Energy, Elsevier, vol. 158(C), pages 238-255.
    19. Ramos-Teodoro, Jerónimo & Rodríguez, Francisco & Berenguel, Manuel & Torres, José Luis, 2018. "Heterogeneous resource management in energy hubs with self-consumption: Contributions and application example," Applied Energy, Elsevier, vol. 229(C), pages 537-550.
    20. Natarianto Indrawan & Betty Simkins & Ajay Kumar & Raymond L. Huhnke, 2020. "Economics of Distributed Power Generation via Gasification of Biomass and Municipal Solid Waste," Energies, MDPI, vol. 13(14), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3312-:d:518857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.