IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i2p890-d481879.html
   My bibliography  Save this article

Nutrient and Stoichiometric Characteristics of Aggregates in a Sloping Farmland Area under Different Tillage Practices

Author

Listed:
  • Jie Zhang

    (College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
    Key Laboratory of Soil Erosion and Prevention, Jiangxi Institute of Soil and Water Conservation, Nanchang 330029, China)

  • Yaojun Liu

    (College of Resources and Environmental Sciences, Hunan Normal University, Changsha 410081, China
    These authors contributed equally to this work.)

  • Taihui Zheng

    (Key Laboratory of Soil Erosion and Prevention, Jiangxi Institute of Soil and Water Conservation, Nanchang 330029, China
    These authors contributed equally to this work.)

  • Xiaomin Zhao

    (College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China)

  • Hongguang Liu

    (Key Laboratory of Soil Erosion and Prevention, Jiangxi Institute of Soil and Water Conservation, Nanchang 330029, China)

  • Yongfen Zhang

    (Key Laboratory of Soil Erosion and Prevention, Jiangxi Institute of Soil and Water Conservation, Nanchang 330029, China)

Abstract

Sloping farmland is prevalent in hilly red soil areas of South China. Improper tillage patterns induce decreased soil organic matter, soil aggregate breakdown, and nutrient imbalance, thereby restricting crop production. However, the stoichiometric characteristics could reflect the nutrient availability which was mostly studied on bulk soil. The stoichiometric characteristics of soil aggregates with multiple functions in farmlands has rarely been studied. The study was to reveal the impact of tillage patterns on the size distribution, nutrient levels, and stoichiometric ratios of soil aggregates after 20 years’ cultivation. Soil samples of 0–20 cm and 20–40 cm from five tillage patterns, bare-land control (BL), longitudinal-ridge tillage (LR), conventional tillage + straw mulching (CS), cross-ridge tillage (CR), and longitudinal-ridge tillage + hedgerows (LH) were collected. The elemental content (C, N and P) and soil aggregate size distribution were determined, and the stoichiometric ratios were subsequently calculated. Through our analysis and study, it was found that the nutrient content of >2 mm soil aggregates in all plots was the highest. In the hedgerow plots, >2 mm water-stable soil aggregate content was increased. Therefore, LH plots have the highest content of organic matter and nutrients. After 20 years of cultivation, stoichiometric ratio of each plot showed different changes on soil aggregates at different levels. the C:N, C:P, and N:P ratios are lower than the national average of cultivated land. Among of them, the stoichiometric ratio in the LH plot is closer to the mean and showed better water-stable aggregate enhancement. Therefore, longitudinal-ridge tillage + hedgerows can be recommended as a cultivation measure. This study provides a reference for determining appropriate tillage measures, balancing nutrient ratios, and implementing rational fertilization.

Suggested Citation

  • Jie Zhang & Yaojun Liu & Taihui Zheng & Xiaomin Zhao & Hongguang Liu & Yongfen Zhang, 2021. "Nutrient and Stoichiometric Characteristics of Aggregates in a Sloping Farmland Area under Different Tillage Practices," Sustainability, MDPI, vol. 13(2), pages 1-19, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:890-:d:481879
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/2/890/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/2/890/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. James J. Elser & William F. Fagan & Robert F. Denno & Dean R. Dobberfuhl & Ayoola Folarin & Andrea Huberty & Sebastian Interlandi & Susan S. Kilham & Edward McCauley & Kimberly L. Schulz & Evan H. Sie, 2000. "Nutritional constraints in terrestrial and freshwater food webs," Nature, Nature, vol. 408(6812), pages 578-580, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Wang & Wei Dai & Kaikai Fang & Hui Gao & Zhimin Sha & Linkui Cao, 2022. "Nutrient Characterization in Soil Aggregate Fractions with Different Fertilizer Treatments in Greenhouse Vegetable Cultivation," Agriculture, MDPI, vol. 12(4), pages 1-15, March.
    2. Zijuan Zhao & Beilei Fan & Dong Liu, 2021. "Evaluating the Impact of Crop Layout Changes on N and P Nutrient Balance: A Case Study in the West Liaohe River Basin, China," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
    3. Tianyu Qin & Lan Wang & Jianshe Zhao & Gaifang Zhou & Caihong Li & Liyue Guo & Gaoming Jiang, 2022. "Effects of Straw Mulching Thickness on the Soil Health in a Temperate Organic Vineyard," Agriculture, MDPI, vol. 12(11), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hailiang Li & M. James C. Crabbe & Haikui Chen, 2020. "History and Trends in Ecological Stoichiometry Research from 1992 to 2019: A Scientometric Analysis," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    2. Yang Ma & Chunlai Zhang & Hui Yang & Yikai Xu & Yan Chen & Jing Ning, 2023. "The Characteristics of Soil C, N and P and Stoichiometric Ratios as Affected by Land-Use in a Karst Area, Southwest China," Land, MDPI, vol. 12(6), pages 1-17, May.
    3. Josep Penuelas & Tamás Krisztin & Michael Obersteiner & Florian Huber & Hannes Winner & Ivan A. Janssens & Philippe Ciais & Jordi Sardans, 2020. "Country-Level Relationships of the Human Intake of N and P, Animal and Vegetable Food, and Alcoholic Beverages with Cancer and Life Expectancy," IJERPH, MDPI, vol. 17(19), pages 1-15, October.
    4. Zhiwei Cao & Xi Fang & Wenhua Xiang & Pifeng Lei & Changhui Peng, 2020. "The Vertical Differences in the Change Rates and Controlling Factors of Soil Organic Carbon and Total Nitrogen along Vegetation Restoration in a Subtropical Area of China," Sustainability, MDPI, vol. 12(16), pages 1-17, August.
    5. Guanghua Jing & Tianming Hu & Jian Liu & Jimin Cheng & Wei Li, 2020. "Biomass Estimation, Nutrient Accumulation, and Stoichiometric Characteristics of Dominant Tree Species in the Semi-Arid Region on the Loess Plateau of China," Sustainability, MDPI, vol. 12(1), pages 1-16, January.
    6. Peacor, Scott D. & Allesina, Stefano & Riolo, Rick L. & Hunter, Tim S., 2007. "A new computational system, DOVE (Digital Organisms in a Virtual Ecosystem), to study phenotypic plasticity and its effects in food webs," Ecological Modelling, Elsevier, vol. 205(1), pages 13-28.
    7. Xiaolong Zhang & Tianyu Guan & Jihua Zhou & Wentao Cai & Nannan Gao & Hui Du & Lianhe Jiang & Liming Lai & Yuanrun Zheng, 2018. "Community Characteristics and Leaf Stoichiometric Traits of Desert Ecosystems Regulated by Precipitation and Soil in an Arid Area of China," IJERPH, MDPI, vol. 15(1), pages 1-19, January.
    8. Law, Tony & Zhang, Weitao & Zhao, Jingyang & Arhonditsis, George B., 2009. "Structural changes in lake functioning induced from nutrient loading and climate variability," Ecological Modelling, Elsevier, vol. 220(7), pages 979-997.
    9. Stech, Harlan & Peckham, Bruce & Pastor, John, 2012. "Enrichment in a general class of stoichiometric producer–consumer population growth models," Theoretical Population Biology, Elsevier, vol. 81(3), pages 210-222.
    10. Zhengkun Hu & Manuel Delgado-Baquerizo & Nicolas Fanin & Xiaoyun Chen & Yan Zhou & Guozhen Du & Feng Hu & Lin Jiang & Shuijin Hu & Manqiang Liu, 2024. "Nutrient-induced acidification modulates soil biodiversity-function relationships," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Marcin Dębowski & Marta Kisielewska & Joanna Kazimierowicz & Aleksandra Rudnicka & Magda Dudek & Zdzisława Romanowska-Duda & Marcin Zieliński, 2020. "The effects of Microalgae Biomass Co-Substrate on Biogas Production from the Common Agricultural Biogas Plants Feedstock," Energies, MDPI, vol. 13(9), pages 1-13, May.
    12. Luyun Chen & Yongheng Gao, 2022. "Global Climate Change Effects on Soil Microbial Biomass Stoichiometry in Alpine Ecosystems," Land, MDPI, vol. 11(10), pages 1-16, September.
    13. Elser, James J. & Loladze, Irakli & Peace, Angela L. & Kuang, Yang, 2012. "Lotka re-loaded: Modeling trophic interactions under stoichiometric constraints," Ecological Modelling, Elsevier, vol. 245(C), pages 3-11.
    14. Jingyun Yin & Jihong Xia & Zhichang Xia & Wangwei Cai & Zewen Liu & Kejun Xu & Yue Wang & Rongzhen Zhang & Xu Dong, 2022. "Temporal Variation and Spatial Distribution in the Water Environment Helps Explain Seasonal Dynamics of Zooplankton in River-Type Reservoir," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    15. Mengdie Feng & Dengyu Zhang & Binghui He & Ke Liang & Peidong Xi & Yunfei Bi & Yingying Huang & Dongxin Liu & Tianyang Li, 2021. "Characteristics of Soil C, N, and P Stoichiometry as Affected by Land Use and Slope Position in the Three Gorges Reservoir Area, Southwest China," Sustainability, MDPI, vol. 13(17), pages 1-13, September.
    16. Xiaobo Huang & Xuedong Lang & Shuaifeng Li & Wande Liu & Jianrong Su, 2022. "Leaf Carbon, Nitrogen and Phosphorus Stoichiometry in a Pinus yunnanensis Forest in Southwest China," Sustainability, MDPI, vol. 14(10), pages 1-10, May.
    17. Tijani, Hamzat & Abdullah, Norhayati & Yuzir, Ali, 2015. "Integration of microalgae biomass in biomethanation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1610-1622.
    18. Prado, Patricia & Ibáñez, Carles & Caiola, Nuno & Reyes, Enrique, 2013. "Evaluation of seasonal variability in the food-web properties of coastal lagoons subjected to contrasting salinity gradients using network analyses," Ecological Modelling, Elsevier, vol. 265(C), pages 180-193.
    19. Jankowska, Ewelina & Sahu, Ashish K. & Oleskowicz-Popiel, Piotr, 2017. "Biogas from microalgae: Review on microalgae's cultivation, harvesting and pretreatment for anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 692-709.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:890-:d:481879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.