IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i19p7240-d423448.html
   My bibliography  Save this article

Country-Level Relationships of the Human Intake of N and P, Animal and Vegetable Food, and Alcoholic Beverages with Cancer and Life Expectancy

Author

Listed:
  • Josep Penuelas

    (CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Cerdanyola del Vallès, Spain
    CREAF, 08193 Cerdanyola del Vallès, Spain)

  • Tamás Krisztin

    (International Institute for Applied Systems Analysis (IIASA), Ecosystems Services and Management, Schlossplatz 1, A-2361 Laxenburg, Austria)

  • Michael Obersteiner

    (International Institute for Applied Systems Analysis (IIASA), Ecosystems Services and Management, Schlossplatz 1, A-2361 Laxenburg, Austria)

  • Florian Huber

    (Paris Lodron University of Salzburg, Mönchsberg 2a, A-5020 Salzburg, Austria)

  • Hannes Winner

    (Paris Lodron University of Salzburg, Mönchsberg 2a, A-5020 Salzburg, Austria
    Austrian Institute of Economic Research (WIFO), Arsenal Objekt 20, A-1030 Vienna, Austria)

  • Ivan A. Janssens

    (Research Group Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, B-2610 Wilrijk, Belgium)

  • Philippe Ciais

    (Laboratoire des Sciences du Climat et de l’Environnement, IPSL, 91191 Gif-sur-Yvette, France)

  • Jordi Sardans

    (CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Cerdanyola del Vallès, Spain
    CREAF, 08193 Cerdanyola del Vallès, Spain)

Abstract

Background: The quantity, quality, and type (e.g., animal and vegetable) of human food have been correlated with human health, although with some contradictory or neutral results. We aimed to shed light on this association by using the integrated data at country level. Methods: We correlated elemental (nitrogen (N) and phosphorus (P)) compositions and stoichiometries (N:P ratios), molecular (proteins) and energetic traits (kilocalories) of food of animal (terrestrial or aquatic) and vegetable origin, and alcoholic beverages with cancer prevalence and mortality and life expectancy (LE) at birth at the country level. We used the official databases of United Nations (UN), Food and Agriculture Organization of the United Nations (FAO), Organization for Economic Co-operation and Development (OECD), World Bank, World Health Organization (WHO), U.S. Department of Agriculture, U.S. Department of Health, and Eurobarometer, while also considering other possibly involved variables such as income, mean age, or human development index of each country. Results: The per capita intakes of N, P, protein, and total intake from terrestrial animals, and especially alcohol were significantly and positively associated with prevalence and mortality from total, colon, lung, breast, and prostate cancers. In contrast, high per capita intakes of vegetable N, P, N:P, protein, and total plant intake exhibited negative relationships with cancer prevalence and mortality. However, a high LE at birth, especially in underdeveloped countries was more strongly correlated with a higher intake of food, independent of its animal or vegetable origin, than with other variables, such as higher income or the human development index. Conclusions: Our analyses, thus, yielded four generally consistent conclusions. First, the excessive intake of terrestrial animal food, especially the levels of protein, N, and P, is associated with higher prevalence of cancer, whereas equivalent intake from vegetables is associated with lower prevalence. Second, no consistent relationship was found for food N:P ratio and cancer prevalence. Third, the consumption of alcoholic beverages correlates with prevalence and mortality by malignant neoplasms. Fourth, in underdeveloped countries, reducing famine has a greater positive impact on health and LE than a healthier diet.

Suggested Citation

  • Josep Penuelas & Tamás Krisztin & Michael Obersteiner & Florian Huber & Hannes Winner & Ivan A. Janssens & Philippe Ciais & Jordi Sardans, 2020. "Country-Level Relationships of the Human Intake of N and P, Animal and Vegetable Food, and Alcoholic Beverages with Cancer and Life Expectancy," IJERPH, MDPI, vol. 17(19), pages 1-15, October.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:19:p:7240-:d:423448
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/19/7240/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/19/7240/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. James J. Elser & William F. Fagan & Robert F. Denno & Dean R. Dobberfuhl & Ayoola Folarin & Andrea Huberty & Sebastian Interlandi & Susan S. Kilham & Edward McCauley & Kimberly L. Schulz & Evan H. Sie, 2000. "Nutritional constraints in terrestrial and freshwater food webs," Nature, Nature, vol. 408(6812), pages 578-580, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiheng Chen & Yuting Ma & Junyi Hua & Yuanhong Wang & Hongpeng Guo, 2021. "Impacts from Economic Development and Environmental Factors on Life Expectancy: A Comparative Study Based on Data from Both Developed and Developing Countries from 2004 to 2016," IJERPH, MDPI, vol. 18(16), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hailiang Li & M. James C. Crabbe & Haikui Chen, 2020. "History and Trends in Ecological Stoichiometry Research from 1992 to 2019: A Scientometric Analysis," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    2. Law, Tony & Zhang, Weitao & Zhao, Jingyang & Arhonditsis, George B., 2009. "Structural changes in lake functioning induced from nutrient loading and climate variability," Ecological Modelling, Elsevier, vol. 220(7), pages 979-997.
    3. Stech, Harlan & Peckham, Bruce & Pastor, John, 2012. "Enrichment in a general class of stoichiometric producer–consumer population growth models," Theoretical Population Biology, Elsevier, vol. 81(3), pages 210-222.
    4. Zhengkun Hu & Manuel Delgado-Baquerizo & Nicolas Fanin & Xiaoyun Chen & Yan Zhou & Guozhen Du & Feng Hu & Lin Jiang & Shuijin Hu & Manqiang Liu, 2024. "Nutrient-induced acidification modulates soil biodiversity-function relationships," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Marcin Dębowski & Marta Kisielewska & Joanna Kazimierowicz & Aleksandra Rudnicka & Magda Dudek & Zdzisława Romanowska-Duda & Marcin Zieliński, 2020. "The effects of Microalgae Biomass Co-Substrate on Biogas Production from the Common Agricultural Biogas Plants Feedstock," Energies, MDPI, vol. 13(9), pages 1-13, May.
    6. Yang Ma & Chunlai Zhang & Hui Yang & Yikai Xu & Yan Chen & Jing Ning, 2023. "The Characteristics of Soil C, N and P and Stoichiometric Ratios as Affected by Land-Use in a Karst Area, Southwest China," Land, MDPI, vol. 12(6), pages 1-17, May.
    7. Luyun Chen & Yongheng Gao, 2022. "Global Climate Change Effects on Soil Microbial Biomass Stoichiometry in Alpine Ecosystems," Land, MDPI, vol. 11(10), pages 1-16, September.
    8. Zhiwei Cao & Xi Fang & Wenhua Xiang & Pifeng Lei & Changhui Peng, 2020. "The Vertical Differences in the Change Rates and Controlling Factors of Soil Organic Carbon and Total Nitrogen along Vegetation Restoration in a Subtropical Area of China," Sustainability, MDPI, vol. 12(16), pages 1-17, August.
    9. Jie Zhang & Yaojun Liu & Taihui Zheng & Xiaomin Zhao & Hongguang Liu & Yongfen Zhang, 2021. "Nutrient and Stoichiometric Characteristics of Aggregates in a Sloping Farmland Area under Different Tillage Practices," Sustainability, MDPI, vol. 13(2), pages 1-19, January.
    10. Elser, James J. & Loladze, Irakli & Peace, Angela L. & Kuang, Yang, 2012. "Lotka re-loaded: Modeling trophic interactions under stoichiometric constraints," Ecological Modelling, Elsevier, vol. 245(C), pages 3-11.
    11. Jingyun Yin & Jihong Xia & Zhichang Xia & Wangwei Cai & Zewen Liu & Kejun Xu & Yue Wang & Rongzhen Zhang & Xu Dong, 2022. "Temporal Variation and Spatial Distribution in the Water Environment Helps Explain Seasonal Dynamics of Zooplankton in River-Type Reservoir," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    12. Mengdie Feng & Dengyu Zhang & Binghui He & Ke Liang & Peidong Xi & Yunfei Bi & Yingying Huang & Dongxin Liu & Tianyang Li, 2021. "Characteristics of Soil C, N, and P Stoichiometry as Affected by Land Use and Slope Position in the Three Gorges Reservoir Area, Southwest China," Sustainability, MDPI, vol. 13(17), pages 1-13, September.
    13. Xiaobo Huang & Xuedong Lang & Shuaifeng Li & Wande Liu & Jianrong Su, 2022. "Leaf Carbon, Nitrogen and Phosphorus Stoichiometry in a Pinus yunnanensis Forest in Southwest China," Sustainability, MDPI, vol. 14(10), pages 1-10, May.
    14. Tijani, Hamzat & Abdullah, Norhayati & Yuzir, Ali, 2015. "Integration of microalgae biomass in biomethanation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1610-1622.
    15. Prado, Patricia & Ibáñez, Carles & Caiola, Nuno & Reyes, Enrique, 2013. "Evaluation of seasonal variability in the food-web properties of coastal lagoons subjected to contrasting salinity gradients using network analyses," Ecological Modelling, Elsevier, vol. 265(C), pages 180-193.
    16. Guanghua Jing & Tianming Hu & Jian Liu & Jimin Cheng & Wei Li, 2020. "Biomass Estimation, Nutrient Accumulation, and Stoichiometric Characteristics of Dominant Tree Species in the Semi-Arid Region on the Loess Plateau of China," Sustainability, MDPI, vol. 12(1), pages 1-16, January.
    17. Jankowska, Ewelina & Sahu, Ashish K. & Oleskowicz-Popiel, Piotr, 2017. "Biogas from microalgae: Review on microalgae's cultivation, harvesting and pretreatment for anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 692-709.
    18. Peacor, Scott D. & Allesina, Stefano & Riolo, Rick L. & Hunter, Tim S., 2007. "A new computational system, DOVE (Digital Organisms in a Virtual Ecosystem), to study phenotypic plasticity and its effects in food webs," Ecological Modelling, Elsevier, vol. 205(1), pages 13-28.
    19. Xiaolong Zhang & Tianyu Guan & Jihua Zhou & Wentao Cai & Nannan Gao & Hui Du & Lianhe Jiang & Liming Lai & Yuanrun Zheng, 2018. "Community Characteristics and Leaf Stoichiometric Traits of Desert Ecosystems Regulated by Precipitation and Soil in an Arid Area of China," IJERPH, MDPI, vol. 15(1), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:19:p:7240-:d:423448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.