IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v81y2012i3p210-222.html
   My bibliography  Save this article

Enrichment in a general class of stoichiometric producer–consumer population growth models

Author

Listed:
  • Stech, Harlan
  • Peckham, Bruce
  • Pastor, John

Abstract

This paper presents the derivation and partial analysis of a general producer–consumer model. The model is stoichiometric in that it includes the growth constraints imposed by species-specific biomass carbon to nutrient ratios. The model unifies the approaches of other studies in recent years, and is calibrated from an extensive review of the algae–Daphnia literature. Numerical simulations and bifurcation analysis are used to examine the impact of energy enrichment under nutrient and stoichiometric constraints. Our results suggest that the variety of system responses previously cited for related models can be attributed to the size of the total system nutrient pool, which is here assumed fixed. New, more complicated bifurcation sequences, such as multiple homoclinic bifurcations, are demonstrated as well. The mechanistic basis of the model permits us to show the robustness of the system’s dynamics subject to alternate approaches to modeling producer and consumer biomass production.

Suggested Citation

  • Stech, Harlan & Peckham, Bruce & Pastor, John, 2012. "Enrichment in a general class of stoichiometric producer–consumer population growth models," Theoretical Population Biology, Elsevier, vol. 81(3), pages 210-222.
  • Handle: RePEc:eee:thpobi:v:81:y:2012:i:3:p:210-222
    DOI: 10.1016/j.tpb.2012.01.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580912000056
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2012.01.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James J. Elser & William F. Fagan & Robert F. Denno & Dean R. Dobberfuhl & Ayoola Folarin & Andrea Huberty & Sebastian Interlandi & Susan S. Kilham & Edward McCauley & Kimberly L. Schulz & Evan H. Sie, 2000. "Nutritional constraints in terrestrial and freshwater food webs," Nature, Nature, vol. 408(6812), pages 578-580, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hailiang Li & M. James C. Crabbe & Haikui Chen, 2020. "History and Trends in Ecological Stoichiometry Research from 1992 to 2019: A Scientometric Analysis," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    2. Law, Tony & Zhang, Weitao & Zhao, Jingyang & Arhonditsis, George B., 2009. "Structural changes in lake functioning induced from nutrient loading and climate variability," Ecological Modelling, Elsevier, vol. 220(7), pages 979-997.
    3. Marcin Dębowski & Marta Kisielewska & Joanna Kazimierowicz & Aleksandra Rudnicka & Magda Dudek & Zdzisława Romanowska-Duda & Marcin Zieliński, 2020. "The effects of Microalgae Biomass Co-Substrate on Biogas Production from the Common Agricultural Biogas Plants Feedstock," Energies, MDPI, vol. 13(9), pages 1-13, May.
    4. Yang Ma & Chunlai Zhang & Hui Yang & Yikai Xu & Yan Chen & Jing Ning, 2023. "The Characteristics of Soil C, N and P and Stoichiometric Ratios as Affected by Land-Use in a Karst Area, Southwest China," Land, MDPI, vol. 12(6), pages 1-17, May.
    5. Luyun Chen & Yongheng Gao, 2022. "Global Climate Change Effects on Soil Microbial Biomass Stoichiometry in Alpine Ecosystems," Land, MDPI, vol. 11(10), pages 1-16, September.
    6. Josep Penuelas & Tamás Krisztin & Michael Obersteiner & Florian Huber & Hannes Winner & Ivan A. Janssens & Philippe Ciais & Jordi Sardans, 2020. "Country-Level Relationships of the Human Intake of N and P, Animal and Vegetable Food, and Alcoholic Beverages with Cancer and Life Expectancy," IJERPH, MDPI, vol. 17(19), pages 1-15, October.
    7. Zhiwei Cao & Xi Fang & Wenhua Xiang & Pifeng Lei & Changhui Peng, 2020. "The Vertical Differences in the Change Rates and Controlling Factors of Soil Organic Carbon and Total Nitrogen along Vegetation Restoration in a Subtropical Area of China," Sustainability, MDPI, vol. 12(16), pages 1-17, August.
    8. Jie Zhang & Yaojun Liu & Taihui Zheng & Xiaomin Zhao & Hongguang Liu & Yongfen Zhang, 2021. "Nutrient and Stoichiometric Characteristics of Aggregates in a Sloping Farmland Area under Different Tillage Practices," Sustainability, MDPI, vol. 13(2), pages 1-19, January.
    9. Elser, James J. & Loladze, Irakli & Peace, Angela L. & Kuang, Yang, 2012. "Lotka re-loaded: Modeling trophic interactions under stoichiometric constraints," Ecological Modelling, Elsevier, vol. 245(C), pages 3-11.
    10. Jingyun Yin & Jihong Xia & Zhichang Xia & Wangwei Cai & Zewen Liu & Kejun Xu & Yue Wang & Rongzhen Zhang & Xu Dong, 2022. "Temporal Variation and Spatial Distribution in the Water Environment Helps Explain Seasonal Dynamics of Zooplankton in River-Type Reservoir," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    11. Mengdie Feng & Dengyu Zhang & Binghui He & Ke Liang & Peidong Xi & Yunfei Bi & Yingying Huang & Dongxin Liu & Tianyang Li, 2021. "Characteristics of Soil C, N, and P Stoichiometry as Affected by Land Use and Slope Position in the Three Gorges Reservoir Area, Southwest China," Sustainability, MDPI, vol. 13(17), pages 1-13, September.
    12. Xiaobo Huang & Xuedong Lang & Shuaifeng Li & Wande Liu & Jianrong Su, 2022. "Leaf Carbon, Nitrogen and Phosphorus Stoichiometry in a Pinus yunnanensis Forest in Southwest China," Sustainability, MDPI, vol. 14(10), pages 1-10, May.
    13. Tijani, Hamzat & Abdullah, Norhayati & Yuzir, Ali, 2015. "Integration of microalgae biomass in biomethanation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1610-1622.
    14. Prado, Patricia & Ibáñez, Carles & Caiola, Nuno & Reyes, Enrique, 2013. "Evaluation of seasonal variability in the food-web properties of coastal lagoons subjected to contrasting salinity gradients using network analyses," Ecological Modelling, Elsevier, vol. 265(C), pages 180-193.
    15. Guanghua Jing & Tianming Hu & Jian Liu & Jimin Cheng & Wei Li, 2020. "Biomass Estimation, Nutrient Accumulation, and Stoichiometric Characteristics of Dominant Tree Species in the Semi-Arid Region on the Loess Plateau of China," Sustainability, MDPI, vol. 12(1), pages 1-16, January.
    16. Jankowska, Ewelina & Sahu, Ashish K. & Oleskowicz-Popiel, Piotr, 2017. "Biogas from microalgae: Review on microalgae's cultivation, harvesting and pretreatment for anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 692-709.
    17. Peacor, Scott D. & Allesina, Stefano & Riolo, Rick L. & Hunter, Tim S., 2007. "A new computational system, DOVE (Digital Organisms in a Virtual Ecosystem), to study phenotypic plasticity and its effects in food webs," Ecological Modelling, Elsevier, vol. 205(1), pages 13-28.
    18. Xiaolong Zhang & Tianyu Guan & Jihua Zhou & Wentao Cai & Nannan Gao & Hui Du & Lianhe Jiang & Liming Lai & Yuanrun Zheng, 2018. "Community Characteristics and Leaf Stoichiometric Traits of Desert Ecosystems Regulated by Precipitation and Soil in an Arid Area of China," IJERPH, MDPI, vol. 15(1), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:81:y:2012:i:3:p:210-222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.