IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i22p12735-d681534.html
   My bibliography  Save this article

Impact of Cropland Reclamation on Ecological Security in the Yangtze River Economic Belt, China

Author

Listed:
  • Feng Yin

    (Spatial Planning Research Institute of Hubei Province, Wuhan 430010, China)

  • Ting Zhou

    (College of Public Administration, Huazhong Agricultural University, Wuhan 430010, China)

  • Xinli Ke

    (College of Public Administration, Huazhong Agricultural University, Wuhan 430010, China)

Abstract

Ecological security is important both for maintaining the function of an ecosystem and for providing ecosystem services to the human wellbeing. The impact of land use change/cover on ecological security has attracted considerable attention, whereas the role of cropland reclamation remains unclear. The indirect loss of ecological land that occurs upon the request of cropland requisition-compensation policies offer further changes to ecological security. In order to ascertain the impact of cropland reclamation on ecological security, in this study three scenarios are established, addressing cropland returning to ecological lands without a slope limitation, with a slope <25°, and with a reclaimed cropland slope ≥25°. This study was conducted in the Yangtze River economic belt (YREB) due to its important contribution to ecological security in China. Land uses in different scenarios in 2030 are projected using the land use simulation model LANDSCAPE. Accordingly, ecological security in each scenario was evaluated using the contribution–vigour–organization–resilience framework, comprising the variables carbon storage, water purification, water yield, habitat quality, net primary productivity, mean patch area, Shannon’s diversity index, largest patch index and contagion, as well as the normalized difference vegetation index. The results indicate that about 62% of YREB land is projected to remain stable in terms of ecological security, while about 21% will deteriorate and 17% will improve between 2015–2030. Land where ecological security is projected to improve is concentrated in areas where broad and connected croplands are distributed. The fact that a higher proportion of areas will deteriorate than improve suggests that the negative impact of cropland change on ecological security should not be ignored. Comparing different scenarios, croplands returning to ecological lands pose a particularly significant impact on ecological security, particularly in the upper reaches of the YREB, where steep croplands are concentrated.

Suggested Citation

  • Feng Yin & Ting Zhou & Xinli Ke, 2021. "Impact of Cropland Reclamation on Ecological Security in the Yangtze River Economic Belt, China," Sustainability, MDPI, vol. 13(22), pages 1-16, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12735-:d:681534
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/22/12735/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/22/12735/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Israel, Danilo C. & Briones, Roehlano M., 2012. "Impacts of Natural Disasters on Agriculture, Food Security, and Natural Resources and Environment in the Philippines," Discussion Papers DP 2012-36, Philippine Institute for Development Studies.
    2. Li Wu & Binggeng Xie, 2019. "The variation differences of cultivated land ecological security between flatland and mountainous areas based on LUCC," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-20, August.
    3. Xinli Ke & Liye Wang & Yanchun Ma & Kunpeng Pu & Ting Zhou & Bangyong Xiao & Jiahe Wang, 2019. "Impacts of Strict Cropland Protection on Water Yield: A Case Study of Wuhan, China," Sustainability, MDPI, vol. 11(1), pages 1-16, January.
    4. Caiyao Xu & Lijie Pu & Ming Zhu & Jianguo Li & Xinjian Chen & Xiaohan Wang & Xuefeng Xie, 2016. "Ecological Security and Ecosystem Services in Response to Land Use Change in the Coastal Area of Jiangsu, China," Sustainability, MDPI, vol. 8(8), pages 1-24, August.
    5. Maarten Hilferink & Piet Rietveld, 1999. "LAND USE SCANNER: An integrated GIS based model for long term projections of land use in urban and rural areas," Journal of Geographical Systems, Springer, vol. 1(2), pages 155-177, July.
    6. Xu, Xibao & Jiang, Bo & Chen, Minkun & Bai, Yang & Yang, Guishan, 2020. "Strengthening the effectiveness of nature reserves in representing ecosystem services: The Yangtze River Economic Belt in China," Land Use Policy, Elsevier, vol. 96(C).
    7. Su, Shiliang & Hu, Yi’na & Luo, Fanghan & Mai, Gengchen & Wang, Yaping, 2014. "Farmland fragmentation due to anthropogenic activity in rapidly developing region," Agricultural Systems, Elsevier, vol. 131(C), pages 87-93.
    8. Ke, Xinli & van Vliet, Jasper & Zhou, Ting & Verburg, Peter H. & Zheng, Weiwei & Liu, Xiaoping, 2018. "Direct and indirect loss of natural habitat due to built-up area expansion: A model-based analysis for the city of Wuhan, China," Land Use Policy, Elsevier, vol. 74(C), pages 231-239.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen Li & Xiangmu Jin & Junjun Zhi & Yao Luo & Mengni Li & Wangbing Liu, 2022. "Evaluating Whether Farmland Consolidation Is a Feasible Way to Achieve a Balance of Potential Crop Production in Southeastern Coastal China," Land, MDPI, vol. 11(11), pages 1-17, October.
    2. Wang, Liye & Zhang, Siyu & Xiong, Qiangqiang & Liu, Yu & Liu, Yanfang & Liu, Yaolin, 2022. "Spatiotemporal dynamics of cropland expansion and its driving factors in the Yangtze River Economic Belt: A nuanced analysis at the county scale," Land Use Policy, Elsevier, vol. 119(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Liye & Zhang, Siyu & Xiong, Qiangqiang & Liu, Yu & Liu, Yanfang & Liu, Yaolin, 2022. "Spatiotemporal dynamics of cropland expansion and its driving factors in the Yangtze River Economic Belt: A nuanced analysis at the county scale," Land Use Policy, Elsevier, vol. 119(C).
    2. Liye Wang & Xinli Ke & Assem Abu Hatab, 2020. "Trade-Offs between Economic Benefits and Ecosystem Services Value under Three Cropland Protection Scenarios for Wuhan City in China," Land, MDPI, vol. 9(4), pages 1-17, April.
    3. Ru Chen & Chunbo Huang, 2021. "Landscape Evolution and It’s Impact of Ecosystem Service Value of the Wuhan City, China," IJERPH, MDPI, vol. 18(24), pages 1-21, December.
    4. Youjung Kim & Galen Newman, 2019. "Climate Change Preparedness: Comparing Future Urban Growth and Flood Risk in Amsterdam and Houston," Sustainability, MDPI, vol. 11(4), pages 1-24, February.
    5. Spencer, Nekeisha & Polachek, Solomon, 2015. "Hurricane watch: Battening down the effects of the storm on local crop production," Ecological Economics, Elsevier, vol. 120(C), pages 234-240.
    6. Yang Zou & Dehua Mao, 2022. "Simulation of Freshwater Ecosystem Service Flows under Land-Use Change: A Case Study of Lianshui River Basin, China," Sustainability, MDPI, vol. 14(6), pages 1-15, March.
    7. Shuting Bai & Jiuchun Yang & Yubo Zhang & Fengqin Yan & Lingxue Yu & Shuwen Zhang, 2022. "Evaluating Ecosystem Services and Trade-Offs Based on Land-Use Simulation: A Case Study in the Farming–Pastoral Ecotone of Northern China," Land, MDPI, vol. 11(7), pages 1-17, July.
    8. Chin‐Hsien Yu & Bruce A. McCarl & Jian‐Da Zhu, 2022. "Market response to typhoons: The role of information and expectations," Southern Economic Journal, John Wiley & Sons, vol. 89(2), pages 496-521, October.
    9. Adesoji Adelaja & Justin George, 2021. "Food and Agricultural Security: An Introduction to the Special Issue," Sustainability, MDPI, vol. 13(21), pages 1-7, November.
    10. Ge, Dazhuan & Long, Hualou & Zhang, Yingnan & Ma, Li & Li, Tingting, 2018. "Farmland transition and its influences on grain production in China," Land Use Policy, Elsevier, vol. 70(C), pages 94-105.
    11. Zhang, Qianwen & Gao, Wujun & Su, Shiliang & Weng, Min & Cai, Zhongliang, 2017. "Biophysical and socioeconomic determinants of tea expansion: Apportioning their relative importance for sustainable land use policy," Land Use Policy, Elsevier, vol. 68(C), pages 438-447.
    12. Wang, Cheng & Wang, Gang & Guo, Ziru & Dai, Lingjun & Liu, Hongyu & Li, Yufeng & Chen, Hao & Zhao, Yongxiang & Zhang, Yanan & Cheng, Hai, 2020. "Effects of land-use change on the distribution of the wintering red-crowned crane (Grus japonensis) in the coastal area of northern Jiangsu Province, China," Land Use Policy, Elsevier, vol. 90(C).
    13. Murata, Akira & Miyazaki, Suguru, 2014. "Ex-post Risk Management Among Rural Filipino Farm Households," Working Papers 67, JICA Research Institute.
    14. Yaxin Shi & Yishao Shi, 2020. "Spatio-Temporal Variation Characteristics and Driving Forces of Farmland Shrinkage in Four Metropolises in East Asia," Sustainability, MDPI, vol. 12(3), pages 1-26, January.
    15. Zhang, Yan & Chang, Xia & Liu, Yanfang & Lu, Yanchi & Wang, Yiheng & Liu, Yaolin, 2021. "Urban expansion simulation under constraint of multiple ecosystem services (MESs) based on cellular automata (CA)-Markov model: Scenario analysis and policy implications," Land Use Policy, Elsevier, vol. 108(C).
    16. Mina, Christian D. & Reyes, Celia M. & Agbon, Adrian D. & Arboneda, Arkin, 2017. "Crop Insurance Program of the Philippine Crop Insurance Corporation: Integrative Report from the Five Case Regions in the Philippines," Discussion Papers DP 2017-39, Philippine Institute for Development Studies.
    17. Fernandez-Perez, Adrian & Fuertes, Ana-Maria & Gonzalez-Fernandez, Marcos & Miffre, Joelle, 2020. "Fear of hazards in commodity futures markets," Journal of Banking & Finance, Elsevier, vol. 119(C).
    18. Zhou, Min & Tan, Shukui & Tao, Yinghui & Lu, Yongzhong & Zhang, Zuo & Zhang, Lu & Yan, Danping, 2017. "Neighborhood socioeconomics, food environment and land use determinants of public health: Isolating the relative importance for essential policy insights," Land Use Policy, Elsevier, vol. 68(C), pages 246-253.
    19. Daniela Smiraglia & Alice Cavalli & Chiara Giuliani & Francesca Assennato, 2023. "The Increasing Coastal Urbanization in the Mediterranean Environment: The State of the Art in Italy," Land, MDPI, vol. 12(5), pages 1-17, May.
    20. Chris Jacobs-Crisioni & Vasco Diogo & Carolina Perpina Castillo & Claudia Baranzelli & Filipe Batista e Silva & Konstantin Rosina & Boyan Kavalov & Carlo Lavalle, 2017. "The LUISA Territorial Reference Scenario 2017: A technical description," JRC Research Reports JRC108163, Joint Research Centre.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12735-:d:681534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.