IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i9p3582-d351561.html
   My bibliography  Save this article

Development of a Decision Support Model Based on Machine Learning for Applying Greenhouse Gas Reduction Technology

Author

Listed:
  • Sungwoo Lee

    (Department of Architectural Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Korea)

  • Sungho Tae

    (Department of Architectural Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Korea)

Abstract

Multiple nations have implemented policies for greenhouse gas (GHG) reduction since the 21st Conference of Parties (COP 21) at the United Nations Framework Convention on Climate Change (UNFCCC) in 2015. In this convention, participants voluntarily agreed to a new climate regime that aimed to decrease GHG emissions. Subsequently, a reduction in GHG emissions with specific reduction technologies (renewable energy) to decrease energy consumption has become a necessity and not a choice. With the launch of the Korean Emissions Trading Scheme (K-ETS) in 2015, Korea has certified and financed GHG reduction projects to decrease emissions. To help the user make informed decisions for economic and environmental benefits from the use of renewable energy, an assessment model was developed. This study establishes a simple assessment method (SAM), an assessment database (DB) of 1199 GHG reduction technologies implemented in Korea, and a machine learning-based GHG reduction technology assessment model (GRTM). Additionally, we make suggestions on how to evaluate economic benefits, which can be obtained in conjunction with the environmental benefits of GHG reduction technology. Finally, we validate the applicability of the assessment model on a public building in Korea.

Suggested Citation

  • Sungwoo Lee & Sungho Tae, 2020. "Development of a Decision Support Model Based on Machine Learning for Applying Greenhouse Gas Reduction Technology," Sustainability, MDPI, vol. 12(9), pages 1-19, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3582-:d:351561
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/9/3582/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/9/3582/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roh, Seungjun & Tae, Sungho, 2017. "An integrated assessment system for managing life cycle CO2 emissions of a building," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 265-275.
    2. Peng, Jinqing & Lu, Lin & Yang, Hongxing, 2013. "Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 255-274.
    3. Singh, Devesh & Basu, Chandrajit & Meinhardt-Wollweber, Merve & Roth, Bernhard, 2015. "LEDs for energy efficient greenhouse lighting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 139-147.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sungwoo Lee & Sungho Tae & Hyungjae Jang & Chang U. Chae & Youngjin Bok, 2021. "Development of Building Information Modeling Template for Environmental Impact Assessment," Sustainability, MDPI, vol. 13(6), pages 1-18, March.
    2. Simona Andreea Apostu & Elena Mirela Nichita & Cristina Lidia Manea & Alina Mihaela Irimescu & Marcel Vulpoi, 2023. "Exploring the Influence of Innovation and Technology on Climate Change," Energies, MDPI, vol. 16(17), pages 1-13, September.
    3. Caterina De Lucia & Pasquale Pazienza & Mark Bartlett, 2020. "Does Good ESG Lead to Better Financial Performances by Firms? Machine Learning and Logistic Regression Models of Public Enterprises in Europe," Sustainability, MDPI, vol. 12(13), pages 1-29, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kong, Minjin & Ji, Changyoon & Hong, Taehoon & Kang, Hyuna, 2022. "Impact of the use of recycled materials on the energy conservation and energy transition of buildings using life cycle assessment: A case study in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    2. Sungwoo Lee & Sungho Tae & Hyungjae Jang & Chang U. Chae & Youngjin Bok, 2021. "Development of Building Information Modeling Template for Environmental Impact Assessment," Sustainability, MDPI, vol. 13(6), pages 1-18, March.
    3. Cuce, Erdem & Harjunowibowo, Dewanto & Cuce, Pinar Mert, 2016. "Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 34-59.
    4. Carnevale, E. & Lombardi, L. & Zanchi, L., 2014. "Life Cycle Assessment of solar energy systems: Comparison of photovoltaic and water thermal heater at domestic scale," Energy, Elsevier, vol. 77(C), pages 434-446.
    5. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    6. Zhang, Wenjie & Liu, Shan & Li, Nianping & Xie, Hui & Li, Xuanqi, 2015. "Development forecast and technology roadmap analysis of renewable energy in buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 395-402.
    7. Gerbinet, Saïcha & Belboom, Sandra & Léonard, Angélique, 2014. "Life Cycle Analysis (LCA) of photovoltaic panels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 747-753.
    8. Bocca, Alberto & Chiavazzo, Eliodoro & Macii, Alberto & Asinari, Pietro, 2015. "Solar energy potential assessment: An overview and a fast modeling approach with application to Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 291-296.
    9. Tiantian Zhang & Meng Wang & Hongxing Yang, 2018. "A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems," Energies, MDPI, vol. 11(11), pages 1-34, November.
    10. Olsson, Alexander & Campana, Pietro Elia & Lind, Mårten & Yan, Jinyue, 2014. "Potential for carbon sequestration and mitigation of climate change by irrigation of grasslands," Applied Energy, Elsevier, vol. 136(C), pages 1145-1154.
    11. Bilir, Levent & Yildirim, Nurdan, 2018. "Modeling and performance analysis of a hybrid system for a residential application," Energy, Elsevier, vol. 163(C), pages 555-569.
    12. Aotian Song & Lin Lu & Zhizhao Liu & Man Sing Wong, 2016. "A Study of Incentive Policies for Building-Integrated Photovoltaic Technology in Hong Kong," Sustainability, MDPI, vol. 8(8), pages 1-21, August.
    13. Rojas-Hernandez, Rocío Estefanía & Rubio-Marcos, Fernando & Rodriguez, Miguel Ángel & Fernandez, José Francisco, 2018. "Long lasting phosphors: SrAl2O4:Eu, Dy as the most studied material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2759-2770.
    14. Koppelaar, R.H.E.M., 2017. "Solar-PV energy payback and net energy: Meta-assessment of study quality, reproducibility, and results harmonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1241-1255.
    15. Sampaio, Priscila Gonçalves Vasconcelos & González, Mario Orestes Aguirre, 2017. "Photovoltaic solar energy: Conceptual framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 590-601.
    16. Raghava Kommalapati & Akhil Kadiyala & Md. Tarkik Shahriar & Ziaul Huque, 2017. "Review of the Life Cycle Greenhouse Gas Emissions from Different Photovoltaic and Concentrating Solar Power Electricity Generation Systems," Energies, MDPI, vol. 10(3), pages 1-18, March.
    17. Wang, Meng & Peng, Jinqing & Luo, Yimo & Shen, Zhicheng & Yang, Hongxing, 2021. "Comparison of different simplistic prediction models for forecasting PV power output: Assessment with experimental measurements," Energy, Elsevier, vol. 224(C).
    18. Skandalos, Nikolaos & Wang, Meng & Kapsalis, Vasileios & D'Agostino, Delia & Parker, Danny & Bhuvad, Sushant Suresh & Udayraj, & Peng, Jinqing & Karamanis, Dimitris, 2022. "Building PV integration according to regional climate conditions: BIPV regional adaptability extending Köppen-Geiger climate classification against urban and climate-related temperature increases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    19. Peng, Jinqing & Curcija, Dragan C. & Lu, Lin & Selkowitz, Stephen E. & Yang, Hongxing & Zhang, Weilong, 2016. "Numerical investigation of the energy saving potential of a semi-transparent photovoltaic double-skin facade in a cool-summer Mediterranean climate," Applied Energy, Elsevier, vol. 165(C), pages 345-356.
    20. Tang, Xiaopeng & Gao, Furong & Zou, Changfu & Yao, Ke & Hu, Wengui & Wik, Torsten, 2019. "Load-responsive model switching estimation for state of charge of lithium-ion batteries," Applied Energy, Elsevier, vol. 238(C), pages 423-434.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3582-:d:351561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.