IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i6p2251-d332054.html
   My bibliography  Save this article

Perception of Natural Hazards in Rural Areas: A Case Study Examination of the Influence of Seasonal Weather

Author

Listed:
  • Rodrigo Rudge Ramos Ribeiro

    (Getulio Vargas Foundation (FGV), Av. Paulista 542, São Paulo 01311–000, Brazil)

  • Samia Nascimento Sulaiman

    (Federal University of ABC, Risk Management Laboratory, Av. dos Estados 5001, São Paulo 09210–180, Brazil)

  • Michelle Bonatti

    (Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, 15374 Müncheberg, Germany
    Department of Agricultural Economics, Faculty of Life Sciences Thaer-Institute, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany)

  • Stefan Sieber

    (Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, 15374 Müncheberg, Germany
    Department of Agricultural Economics, Faculty of Life Sciences Thaer-Institute, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany)

  • Marcos Alberto Lana

    (Crop production Ecology, Swedish University of Agricultural Sciences, Uppsala Box 7043 75007, Sweden)

Abstract

A series of factors affect the social perception of hazards in a rural context. This article analyzes how weather conditions influence farmers’ perceptions of natural hazards. In order to understand the relationship between time of year/season and farmers’ concerns about hazards, this study was undertaken. The methodology was based on surveys done to obtain a base-collection of primary data, as well as a meteorological and production analysis using secondary data. A case study of small coffee farms was carried out in a Brazilian municipality with questionnaires applied during the dry season in 2016 and the rainy season in 2017. The results indicate that drought is the main hazard identified by farmers in both weather seasons. Although there were some changes in perceptions observed, the ranking order of the main hazards did not change over the dry and rainy weather seasons.

Suggested Citation

  • Rodrigo Rudge Ramos Ribeiro & Samia Nascimento Sulaiman & Michelle Bonatti & Stefan Sieber & Marcos Alberto Lana, 2020. "Perception of Natural Hazards in Rural Areas: A Case Study Examination of the Influence of Seasonal Weather," Sustainability, MDPI, vol. 12(6), pages 1-13, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2251-:d:332054
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/6/2251/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/6/2251/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Cerulli & Michael Scott & Raivo Aunap & Ain Kull & Jaan Pärn & Jack Holbrook & Ülo Mander, 2020. "The Role of Education in Increasing Awareness and Reducing Impact of Natural Hazards," Sustainability, MDPI, vol. 12(18), pages 1-14, September.
    2. Jean Nsabimana & Sabine Henry & Aloys Ndayisenga & Désiré Kubwimana & Olivier Dewitte & François Kervyn & Caroline Michellier, 2023. "Geo-Hydrological Hazard Impacts, Vulnerability and Perception in Bujumbura (Burundi): A High-Resolution Field-Based Assessment in a Sprawling City," Land, MDPI, vol. 12(10), pages 1-26, October.
    3. Shingirai Mugambiwa & Jabulani Makhubele, 2021. "Anthropogenic flash floods and climate change in rural Zimbabwe: Impacts and options for adaptation," Technium Social Sciences Journal, Technium Science, vol. 21(1), pages 809-819, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Peng, 2015. "Regional earthquake vulnerability assessment using a combination of MCDM methods," Annals of Operations Research, Springer, vol. 234(1), pages 95-110, November.
    2. Meryl Jagarnath & Tirusha Thambiran & Michael Gebreslasie, 2020. "Heat stress risk and vulnerability under climate change in Durban metropolitan, South Africa—identifying urban planning priorities for adaptation," Climatic Change, Springer, vol. 163(2), pages 807-829, November.
    3. Yongdeng Lei & Jing’ai Wang & Yaojie Yue & Hongjian Zhou & Weixia Yin, 2014. "Rethinking the relationships of vulnerability, resilience, and adaptation from a disaster risk perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 609-627, January.
    4. Pujun Liang & Wei Xu & Yunjia Ma & Xiujuan Zhao & Lianjie Qin, 2017. "Increase of Elderly Population in the Rainstorm Hazard Areas of China," IJERPH, MDPI, vol. 14(9), pages 1-17, August.
    5. Kamaldeen Mohammed & Evans Batung & Moses Kansanga & Hanson Nyantakyi-Frimpong & Isaac Luginaah, 2021. "Livelihood diversification strategies and resilience to climate change in semi-arid northern Ghana," Climatic Change, Springer, vol. 164(3), pages 1-23, February.
    6. R. Bryson Touchstone & Kathleen Sherman-Morris, 2016. "Vulnerability to prolonged cold: a case study of the Zeravshan Valley of Tajikistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 1279-1300, September.
    7. Eric Tate, 2012. "Social vulnerability indices: a comparative assessment using uncertainty and sensitivity analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 325-347, September.
    8. Yi Ge & Guangfei Yang & Yi Chen & Wen Dou, 2019. "Examining Social Vulnerability and Inequality: A Joint Analysis through a Connectivity Lens in the Urban Agglomerations of China," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    9. Irina Tumini & Paula Villagra-Islas & Geraldine Herrmann-Lunecke, 2017. "Evaluating reconstruction effects on urban resilience: a comparison between two Chilean tsunami-prone cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1363-1392, February.
    10. Maximiliano Oportus & Rodrigo Cienfuegos & Alejandro Urrutia & Rafael Aránguiz & Patricio A. Catalán & Matías A. Hube, 2020. "Ex post analysis of engineered tsunami mitigation measures in the town of Dichato, Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 367-406, August.
    11. Caitlin Robinson & Stefan Bouzarovski & Sarah Lindley, 2018. "Underrepresenting neighbourhood vulnerabilities? The measurement of fuel poverty in England," Environment and Planning A, , vol. 50(5), pages 1109-1127, August.
    12. Hung-Chih Hung & Ming-Chin Ho & Yi-Jie Chen & Chang-Yi Chian & Su-Ying Chen, 2013. "Integrating long-term seismic risk changes into improving emergency response and land-use planning: a case study for the Hsinchu City, Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 491-508, October.
    13. Aparna Kumari & Tim G. Frazier, 2021. "Evaluating social capital in emergency and disaster management and hazards plans," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 949-973, October.
    14. Gainbi Park & Zengwang Xu, 2022. "The constituent components and local indicator variables of social vulnerability index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 95-120, January.
    15. Jie Liu & Zhenwu Shi & Dan Wang, 2016. "Measuring and mapping the flood vulnerability based on land-use patterns: a case study of Beijing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1545-1565, September.
    16. Vitor Baccarin Zanetti & Wilson Cabral De Sousa Junior & Débora M. De Freitas, 2016. "A Climate Change Vulnerability Index and Case Study in a Brazilian Coastal City," Sustainability, MDPI, vol. 8(8), pages 1-12, August.
    17. Ella Furness & Harry Nelson, 2016. "Are human values and community participation key to climate adaptation? The case of community forest organisations in British Columbia," Climatic Change, Springer, vol. 135(2), pages 243-259, March.
    18. Susanne Moser & Margaret Davidson, 2016. "The third national climate assessment’s coastal chapter: the making of an integrated assessment," Climatic Change, Springer, vol. 135(1), pages 127-141, March.
    19. Chi Zhang & Yuntao Wang & Yu Li & Wei Ding, 2017. "Vulnerability Analysis of Urban Drainage Systems: Tree vs. Loop Networks," Sustainability, MDPI, vol. 9(3), pages 1-18, March.
    20. Davlasheridze, Meri & Fisher-Vanden, Karen & Allen Klaiber, H., 2017. "The effects of adaptation measures on hurricane induced property losses: Which FEMA investments have the highest returns?," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 93-114.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2251-:d:332054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.