IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i5p2090-d330090.html
   My bibliography  Save this article

Climate Change Impacts on Extreme Flows Under IPCC RCP Scenarios in the Mountainous Kaidu Watershed, Tarim River Basin

Author

Listed:
  • Yue Huang

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Key Laboratory of GIS & RS Application Xinjiang Uygur Autonomous Region, Urumqi 830011, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yonggang Ma

    (College of Resources and Environment Science, Xinjiang University, Urumqi, Xinjiang 830046, China)

  • Tie Liu

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Key Laboratory of GIS & RS Application Xinjiang Uygur Autonomous Region, Urumqi 830011, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Min Luo

    (College of Geographical Science, Inner Mongolia Normal University, Hohhot 010022, China)

Abstract

In the 21st century, heavier rainfall events and warmer temperatures in mountainous regions have significant impacts on hydrological processes and the occurrence of flood/drought extremes. Long-term modeling and peak flow detection of streamflow series are crucial in understanding the behavior of flood and drought. This study was conducted to analyze the impacts of future climate change on extreme flows in the Kaidu River Basin, northwestern China. The soil water assessment tool (SWAT) was used for hydrological modeling. The projected future precipitation and temperature under Intergovernmental Panel on Climate Change (IPCC) representative concentration pathway (RCP) scenarios were downscaled and used to drive the validated SWAT model. A generalized extreme value (GEV) distribution was employed to assess the probability distribution of flood events. The modeling results showed that the simulated discharge well matched the observed ones both in the calibration and validation periods. Comparing with the historical period, the ensemble with 15 general circulation models (GCMs) showed that the annual precipitation will increase by 7.9–16.1% in the future, and extreme precipitation events will increase in winter months. Future temperature will increase from 0.42 °C/10 a to 0.70 °C/10 a. However, with respect to the hydrological response to climate change, annual mean runoff will decrease by 21.5–40.0% under the mean conditions of the four RCP scenarios. A reduction in streamflow will occur in winter, while significantly increased discharge will occur from April to May. In addition, designed floods for return periods of five, 10 and 20 years in the future, as predicted by the GEV distribution, will decrease by 3–20% over the entire Kaidu watershed compared to those in the historical period. The results will be used to help local water resource management with hazard warning and flood control.

Suggested Citation

  • Yue Huang & Yonggang Ma & Tie Liu & Min Luo, 2020. "Climate Change Impacts on Extreme Flows Under IPCC RCP Scenarios in the Mountainous Kaidu Watershed, Tarim River Basin," Sustainability, MDPI, vol. 12(5), pages 1-23, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:2090-:d:330090
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/5/2090/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/5/2090/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiao Liu & Tie Liu & Anming Bao & Philippe Maeyer & Xianwei Feng & Scott N. Miller & Xi Chen, 2016. "Assessment of Different Modelling Studies on the Spatial Hydrological Processes in an Arid Alpine Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1757-1770, March.
    2. A. Kay & H. Davies & V. Bell & R. Jones, 2009. "Comparison of uncertainty sources for climate change impacts: flood frequency in England," Climatic Change, Springer, vol. 92(1), pages 41-63, January.
    3. Jiao Liu & Tie Liu & Anming Bao & Philippe Maeyer & Xianwei Feng & Scott Miller & Xi Chen, 2016. "Assessment of Different Modelling Studies on the Spatial Hydrological Processes in an Arid Alpine Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1757-1770, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hsiao-Ping Wei & Yuan-Fong Su & Chao-Tzuen Cheng & Keh-Chia Yeh, 2020. "Levee Overtopping Risk Assessment under Climate Change Scenario in Kao-Ping River, Taiwan," Sustainability, MDPI, vol. 12(11), pages 1-12, June.
    2. Jongsung Kim & Myungjin Lee & Heechan Han & Donghyun Kim & Yunghye Bae & Hung Soo Kim, 2022. "Case Study: Development of the CNN Model Considering Teleconnection for Spatial Downscaling of Precipitation in a Climate Change Scenario," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    3. Helena M. Ramos & Mohsen Besharat, 2021. "Urban Flood Risk and Economic Viability Analyses of a Smart Sustainable Drainage System," Sustainability, MDPI, vol. 13(24), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nima Fayaz & Laura E. Condon & David G. Chandler, 2020. "Evaluating the Sensitivity of Projected Reservoir Reliability to the Choice of Climate Projection: A Case Study of Bull Run Watershed, Portland, Oregon," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 1991-2009, April.
    2. Indira Pokhrel & Ajay Kalra & Md Mafuzur Rahaman & Ranjeet Thakali, 2020. "Forecasting of Future Flooding and Risk Assessment under CMIP6 Climate Projection in Neuse River, North Carolina," Forecasting, MDPI, vol. 2(3), pages 1-23, August.
    3. Carolina Natel Moura & Sílvio Luís Rafaeli Neto & Claudia Guimarães Camargo Campos & Eder Alexandre Schatz Sá, 2020. "Hydrological Impacts of Climate Change in a Well-preserved Upland Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2255-2267, June.
    4. Yi Yang & Jianping Tang, 2023. "Downscaling and uncertainty analysis of future concurrent long-duration dry and hot events in China," Climatic Change, Springer, vol. 176(2), pages 1-25, February.
    5. Alison Kay, 2022. "Differences in hydrological impacts using regional climate model and nested convection-permitting model data," Climatic Change, Springer, vol. 173(1), pages 1-19, July.
    6. S. Camici & L. Brocca & T. Moramarco, 2017. "Accuracy versus variability of climate projections for flood assessment in central Italy," Climatic Change, Springer, vol. 141(2), pages 273-286, March.
    7. Shirin Karimi & Bahman Jabbarian Amiri & Arash Malekian, 2019. "Similarity Metrics-Based Uncertainty Analysis of River Water Quality Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 1927-1945, April.
    8. Eun-Sung Chung & Kwangjae Won & Yeonjoo Kim & Hosun Lee, 2014. "Water Resource Vulnerability Characteristics by District’s Population Size in a Changing Climate Using Subjective and Objective Weights," Sustainability, MDPI, vol. 6(9), pages 1-17, September.
    9. Florence Habets & Julien Boé & Michel Déqué & Agnès Ducharne & Simon Gascoin & Ali Hachour & Eric Martin & Christian Pagé & Eric Sauquet & Laurent Terray & Dominique Thiéry & Ludovic Oudin & Pascal Vi, 2013. "Impact of climate change on the hydrogeology of two basins in northern France," Climatic Change, Springer, vol. 121(4), pages 771-785, December.
    10. Richard Arsenault & François Brissette & Jean-Stéphane Malo & Marie Minville & Robert Leconte, 2013. "Structural and Non-Structural Climate Change Adaptation Strategies for the Péribonka Water Resource System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2075-2087, May.
    11. Ye Tian & Yue-Ping Xu & Xu-Jie Zhang, 2013. "Assessment of Climate Change Impacts on River High Flows through Comparative Use of GR4J, HBV and Xinanjiang Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2871-2888, June.
    12. Michelle Vliet & Stephen Blenkinsop & Aidan Burton & Colin Harpham & Hans Broers & Hayley Fowler, 2012. "A multi-model ensemble of downscaled spatial climate change scenarios for the Dommel catchment, Western Europe," Climatic Change, Springer, vol. 111(2), pages 249-277, March.
    13. Zigeng Niu & Lan Feng & Xinxin Chen & Xiuping Yi, 2021. "Evaluation and Future Projection of Extreme Climate Events in the Yellow River Basin and Yangtze River Basin in China Using Ensembled CMIP5 Models Data," IJERPH, MDPI, vol. 18(11), pages 1-26, June.
    14. Lauren M. Cook & Seth McGinnis & Constantine Samaras, 2020. "The effect of modeling choices on updating intensity-duration-frequency curves and stormwater infrastructure designs for climate change," Climatic Change, Springer, vol. 159(2), pages 289-308, March.
    15. Sogol Moradian & Ali Torabi Haghighi & Maryam Asadi & Seyed Ahmad Mirbagheri, 2023. "Future Changes in Precipitation Over Northern Europe Based on a Multi-model Ensemble from CMIP6: Focus on Tana River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2447-2463, May.
    16. Lüliu Liu & Hongmei Xu & Yong Wang & Tong Jiang, 2017. "Impacts of 1.5 and 2 °C global warming on water availability and extreme hydrological events in Yiluo and Beijiang River catchments in China," Climatic Change, Springer, vol. 145(1), pages 145-158, November.
    17. Zhe Yuan & Jijun Xu & Yongqiang Wang, 2018. "Projection of Future Extreme Precipitation and Flood Changes of the Jinsha River Basin in China Based on CMIP5 Climate Models," IJERPH, MDPI, vol. 15(11), pages 1-17, November.
    18. Shaochun Huang & Fred Hattermann & Valentina Krysanova & Axel Bronstert, 2013. "Projections of climate change impacts on river flood conditions in Germany by combining three different RCMs with a regional eco-hydrological model," Climatic Change, Springer, vol. 116(3), pages 631-663, February.
    19. Yi He & Desmond Manful & Rachel Warren & Nicole Forstenhäusler & Timothy J. Osborn & Jeff Price & Rhosanna Jenkins & Craig Wallace & Dai Yamazaki, 2022. "Quantification of impacts between 1.5 and 4 °C of global warming on flooding risks in six countries," Climatic Change, Springer, vol. 170(1), pages 1-21, January.
    20. Rei Itsukushima & Yohei Ogahara & Yuki Iwanaga & Tatsuro Sato, 2018. "Investigating the Influence of Various Stormwater Runoff Control Facilities on Runoff Control Efficiency in a Small Catchment Area," Sustainability, MDPI, vol. 10(2), pages 1-12, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:2090-:d:330090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.