IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i3p1227-d318109.html
   My bibliography  Save this article

Examining the Relationship between Urban Land Expansion and Economic Linkage Using Coupling Analysis: A Case Study of the Yangtze River Economic Belt, China

Author

Listed:
  • Bowen Chen

    (School of Public Administration, Zhejiang University of Finance & Economics, Hangzhou 310018, China)

  • Changyan Wu

    (School of Economics, Zhejiang Gongshang University, Hangzhou 310018, China)

  • Xianjin Huang

    (School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210046, China)

  • Xuefeng Yang

    (School of Public Administration, Zhejiang University of Finance & Economics, Hangzhou 310018, China)

Abstract

Urban land expansion (ULE) has caused negative effects as a result of urbanization and industrialization in China in the past few decades. Strengthening economic linkage and the cooperation among regions has great implications for effectively controlling disorderly ULE and achieving sustainable and intensive land use. Previous research has rarely investigated the relationship between ULE and economic linkage. Therefore, this study analyzes the spatial patterns of ULE and economic linkage in the Yangtze River Economic Belt (YREB) of China via social network analysis and a gravity model. Moreover, the spatial relationship and coupling level between ULE and economic linkage are investigated by building a bivariate spatial autocorrelation model and a coupling coordination degree model, respectively. The results indicate that the YREB experienced rapid ULE, and the area increased from 4.24 × 10 4 km 2 in 1990 to 7.89 × 10 4 km 2 in 2015. The cities that experience rapid ULE have gradually transferred from the east to the west of the YREB. In addition, the economic linkage in eastern cities is evidently higher than that of western cities. Our bivariate spatial model further proves that there are strong negative spatial correlation characteristics between ULE and economic linkage. This indicates that the higher the economic linkage, the lower the speed of ULE. Moreover, the coupling coordination between ULE and economic linkage show that the overall coupling stage changed from an antagonistic stage to a running-in stage. However, the coupling coordination in the YREB presented significant spatial heterogeneity, and most cities in urban agglomeration had a relationship between ULE and economic linkage that was barely balanced, slightly unbalanced, or seriously unbalanced. By considering the limitations and obstacles of current initiatives, suggestions and policy implications for sustainable land use at large regional scales are suggested.

Suggested Citation

  • Bowen Chen & Changyan Wu & Xianjin Huang & Xuefeng Yang, 2020. "Examining the Relationship between Urban Land Expansion and Economic Linkage Using Coupling Analysis: A Case Study of the Yangtze River Economic Belt, China," Sustainability, MDPI, vol. 12(3), pages 1-21, February.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:1227-:d:318109
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/3/1227/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/3/1227/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. Alonso & M. Beamonte & P. Gargallo & M. Salvador, 2014. "Labour and residential accessibility: a Bayesian analysis based on Poisson gravity models with spatial effects," Journal of Geographical Systems, Springer, vol. 16(4), pages 409-439, October.
    2. Wu, Yongjiao & Dong, Suocheng & Huang, Haosheng & Zhai, Jun & Li, Yu & Huang, Dingxuan, 2018. "Quantifying urban land expansion dynamics through improved land management institution model: Application in Ningxia-Inner Mongolia, China," Land Use Policy, Elsevier, vol. 78(C), pages 386-396.
    3. Liu, Yong & Fan, Peilei & Yue, Wenze & Song, Yan, 2018. "Impacts of land finance on urban sprawl in China: The case of Chongqing," Land Use Policy, Elsevier, vol. 72(C), pages 420-432.
    4. Wang, Ran & Cheng, Jinhua & Zhu, Yali & Lu, Peixin, 2017. "Evaluation on the coupling coordination of resources and environment carrying capacity in Chinese mining economic zones," Resources Policy, Elsevier, vol. 53(C), pages 20-25.
    5. Damiaan Persyn & Wouter Torfs, 2016. "A gravity equation for commuting with an application to estimating regional border effects in Belgium," Journal of Economic Geography, Oxford University Press, vol. 16(1), pages 155-175.
    6. Chen, Yanguang, 2015. "The distance-decay function of geographical gravity model: Power law or exponential law?," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 174-189.
    7. Qiurong Xu & Xinqi Zheng & Chunxiao Zhang, 2018. "Quantitative Analysis of the Determinants Influencing Urban Expansion: A Case Study in Beijing, China," Sustainability, MDPI, vol. 10(5), pages 1-16, May.
    8. Zhou, Yang & Guo, Liying & Liu, Yansui, 2019. "Land consolidation boosting poverty alleviation in China: Theory and practice," Land Use Policy, Elsevier, vol. 82(C), pages 339-348.
    9. Feng Lan & Huili Da & Haizhen Wen & Ying Wang, 2019. "Spatial Structure Evolution of Urban Agglomerations and Its Driving Factors in Mainland China: From the Monocentric to the Polycentric Dimension," Sustainability, MDPI, vol. 11(3), pages 1-20, January.
    10. Morris, Sebastian & Jain, Palakh, 2015. "Determinants of OFDI: An Empirical Analysis of OECD Source Countries using Gravity Model," Indian Economic Review, Department of Economics, Delhi School of Economics, vol. 50(2), pages 243-271.
    11. Qing Zheng & Ke Wang & Lingyan Huang & Qiming Zheng & Ghali Abdullahi Abubakar, 2017. "Monitoring the Different Types of Urban Construction Land Expansion (UCLE) in China’s Port City: A Case Study of Ningbo’s Central City," Sustainability, MDPI, vol. 9(12), pages 1-19, December.
    12. Shu, Cheng & Xie, Hualin & Jiang, Jinfa & Chen, Qianru, 2018. "Is Urban Land Development Driven by Economic Development or Fiscal Revenue Stimuli in China?," Land Use Policy, Elsevier, vol. 77(C), pages 107-115.
    13. Monaghan, Sinéad & Lavelle, Jonathan & Gunnigle, Patrick, 2017. "Mapping networks: Exploring the utility of social network analysis in management research and practice," Journal of Business Research, Elsevier, vol. 76(C), pages 136-144.
    14. Sun, Yu & Cui, Yin, 2018. "Evaluating the coordinated development of economic, social and environmental benefits of urban public transportation infrastructure: Case study of four Chinese autonomous municipalities," Transport Policy, Elsevier, vol. 66(C), pages 116-126.
    15. Xin Cheng & Hua Shao & Yang Li & Chao Shen & Peipei Liang, 2019. "Urban Land Intensive Use Evaluation Study Based on Nighttime Light—A Case Study of the Yangtze River Economic Belt," Sustainability, MDPI, vol. 11(3), pages 1-21, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhipeng Yang & Shijun Wang & Meng Guo & Junfeng Tian & Yingjie Zhang, 2021. "Spatiotemporal Differentiation of Territorial Space Development Intensity and Its Habitat Quality Response in Northeast China," Land, MDPI, vol. 10(6), pages 1-20, May.
    2. Jia Zhao & Yuluan Zhao & Xiaopiao Yang, 2022. "Evolution Characteristics and Driving Mechanism of the Territorial Space Pattern in the Yangtze River Economic Belt, China," Land, MDPI, vol. 11(9), pages 1-29, September.
    3. Xiaotong Gao & Naigang Cao & Yushuo Zhang & Lin Zhao, 2022. "Spatial Structure of China’s Green Development Efficiency: A Perspective Based on Social Network Analysis," Sustainability, MDPI, vol. 14(23), pages 1-16, December.
    4. Ma, Wen & Fang, Zhuoqiong & Zhang, Xiangfeng, 2023. "Comparative analysis of structural characteristics of China's 18 typical urban agglomerations based on flows of various elements," Ecological Modelling, Elsevier, vol. 479(C).
    5. Tingting Pan & Fengqin Yan & Fenzhen Su & Vincent Lyne & Chaodong Zhou, 2022. "Land Use Optimization for Coastal Urban Agglomerations Based on Economic and Ecological Gravitational Linkages and Accessibility," Land, MDPI, vol. 11(7), pages 1-18, July.
    6. Tian Liang & Fei Yang & Yinchen Luo & Mengying Fang & Xi Huang & Zhiyong Zhang & Chuanhao Wen & Xiaohong Ren, 2022. "The Synchronous Development Pattern and Type Division of Functional Coupling Coordination and Human Activity Intensity Based on the “Production–Living–Ecological” Space Perspective: A Case Study of Wa," Land, MDPI, vol. 11(11), pages 1-17, October.
    7. Wenfang Pu & Anlu Zhang, 2021. "Can Market Reforms Curb the Expansion of Industrial Land?—Based on the Panel Data Analysis of Five National-Level Urban Agglomerations," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    8. Xin Wang, 2023. "Research on the Coupling Coordination Degree of Triple Helix of Government Guidance, Industrial Innovation and Scientific Research Systems: Evidence from China," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    9. Ke Huang & Martin Dallimer & Lindsay C. Stringer & Anlu Zhang & Ting Zhang, 2021. "Does Economic Agglomeration Lead to Efficient Rural to Urban Land Conversion? An Examination of China’s Metropolitan Area Development Strategy," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    10. Liang Guo & Xiaohuan Xi & Weijun Yang & Lei Liang, 2021. "Monitoring Land Use/Cover Change Using Remotely Sensed Data in Guangzhou of China," Sustainability, MDPI, vol. 13(5), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Changyan & Huang, Xianjin & Chen, Bowen, 2020. "Telecoupling mechanism of urban land expansion based on transportation accessibility: A case study of transitional Yangtze River economic Belt, China," Land Use Policy, Elsevier, vol. 96(C).
    2. Zhang, Pengyan & Yang, Dan & Qin, Mingzhou & Jing, Wenlong, 2020. "Spatial heterogeneity analysis and driving forces exploring of built-up land development intensity in Chinese prefecture-level cities and implications for future Urban Land intensive use," Land Use Policy, Elsevier, vol. 99(C).
    3. Zhou, Yang & Li, Xunhuan & Liu, Yansui, 2020. "Rural land system reforms in China: History, issues, measures and prospects," Land Use Policy, Elsevier, vol. 91(C).
    4. Meicun Li & Chunmei Mao, 2019. "Spatial-Temporal Variance of Coupling Relationship between Population Modernization and Eco-Environment in Beijing-Tianjin-Hebei," Sustainability, MDPI, vol. 11(4), pages 1-13, February.
    5. Yu Liu & Chen Zeng & Huatai Cui & Yanhua Song, 2018. "Sustainable Land Urbanization and Ecological Carrying Capacity: A Spatially Explicit Perspective," Sustainability, MDPI, vol. 10(9), pages 1-16, August.
    6. Wu, Fulong, 2022. "Land financialisation and the financing of urban development in China," Land Use Policy, Elsevier, vol. 112(C).
    7. Xinghong He & Zhichao Cao & Silin Zhang & Shumin Liang & Yuyang Zhang & Tianbo Ji & Quan Shi, 2020. "Coordination Investigation of the Economic, Social and Environmental Benefits of Urban Public Transport Infrastructure in 13 Cities, Jiangsu Province, China," IJERPH, MDPI, vol. 17(18), pages 1-19, September.
    8. Yu, Junqing & Zhou, Kaile & Yang, Shanlin, 2019. "Land use efficiency and influencing factors of urban agglomerations in China," Land Use Policy, Elsevier, vol. 88(C).
    9. Wang, Di & Ren, Cairu & Zhou, Tao, 2021. "Understanding the impact of land finance on industrial structure change in China: Insights from a spatial econometric analysis," Land Use Policy, Elsevier, vol. 103(C).
    10. Hui Li & Kunqiu Chen & Lei Yan & Yulin Zhu & Liuwen Liao & Yangle Chen, 2021. "Urban Land Use Transitions and the Economic Spatial Spillovers of Central Cities in China’s Urban Agglomerations," Land, MDPI, vol. 10(6), pages 1-27, June.
    11. Junfei Chen & Xiaoya Yu & Lei Qiu & Menghua Deng & Ran Dong, 2018. "Study on Vulnerability and Coordination of Water-Energy-Food System in Northwest China," Sustainability, MDPI, vol. 10(10), pages 1-25, October.
    12. Ning Wang & Zhigang Chen & Tianshu Li & Mengjia Zhen, 2022. "Spatiotemporal Pattern Evolution and Influence Mechanism of Urban Vertical Expansion: A Case Study of Jiangsu Province, China," Land, MDPI, vol. 11(3), pages 1-16, March.
    13. Xu Yang & Xuan Zou & Xueqi Liu & Qixuan Li & Siqian Zou & Ming Li, 2023. "The Spatiotemporal Pattern and Driving Mechanism of Urban Sprawl in China’s Counties," Land, MDPI, vol. 12(3), pages 1-16, March.
    14. Zhipeng Tang & Ziao Mei & Jialing Zou, 2021. "Does the Opening of High-Speed Railway Lines Reduce the Carbon Intensity of China’s Resource-Based Cities?," Energies, MDPI, vol. 14(15), pages 1-18, July.
    15. Lü, Da & Gao, Guangyao & Lü, Yihe & Xiao, Feiyan & Fu, Bojie, 2020. "Detailed land use transition quantification matters for smart land management in drylands: An in-depth analysis in Northwest China," Land Use Policy, Elsevier, vol. 90(C).
    16. Han, Wenjing & Zhang, Xiaoling & Zheng, Xian, 2020. "Land use regulation and urban land value: Evidence from China," Land Use Policy, Elsevier, vol. 92(C).
    17. Yue-Hui Yu & Man-Man Peng, 2022. "Development and Poverty Dynamics in Severe Mental Illness: A Modified Capability Approach in the Chinese Context," IJERPH, MDPI, vol. 19(4), pages 1-13, February.
    18. de Oliveira Maciel, Cristiano & Netto, Raul Zanon Rocha, 2020. "Architectural agency in intra-organizational networks," Journal of Business Research, Elsevier, vol. 109(C), pages 489-497.
    19. Razzaq, Asif & Sharif, Arshian & Ozturk, Ilhan & Skare, Marinko, 2022. "Inclusive infrastructure development, green innovation, and sustainable resource management: Evidence from China’s trade-adjusted material footprints," Resources Policy, Elsevier, vol. 79(C).
    20. Liu, Weiwei & Song, Yifan & Bi, Kexin, 2021. "Exploring the patent collaboration network of China's wind energy industry: A study based on patent data from CNIPA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:1227-:d:318109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.