IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i22p9429-d444066.html
   My bibliography  Save this article

Harnessing Remote Sensing Derived Sea Level Rise Models to Assess Cultural Heritage Vulnerability: A Case Study from the Northwest Atlantic Ocean

Author

Listed:
  • Meghan C. L. Howey

    (Department of Anthropology, University of New Hampshire, 73 Main Street, Durham, NH 03824, USA
    Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, 8 College Road, Durham, NH 03824, USA)

Abstract

Climate change threatens cultural heritage across the globe. Of its varied impacts, sea level rise is critically pressing because of the long relationship between humans and the ocean. Numerous cultural heritage sites lie on the world’s fragile coasts. Identifying cultural heritage sites at risk is an urgent need, but archaeological research programs do not always have the resources available to conduct large-scale cultural heritage vulnerability assessments. Given sea level rise poses myriad pressing issues, entities around the globe are developing sea level rise models for various management purposes (ecology, hydrology, real estate, etc.). These remote sensing-derived sea level rise models can be harnessed by archaeologists to assess cultural heritage site vulnerability. Here, such an analysis is realized for a northwest Atlantic Ocean coastal area experiencing relative sea level rise and with robust cultural heritage, including economically significant maritime heritage tourism. Combining archaeological and historic geospatial databases with LIDAR (Light Detection and Ranging)-derived relative sea level rise models illuminates coastal New Hampshire’s cultural heritage vulnerability. This is informative for risk monitoring, mitigation, and preservation planning, especially for cultural heritage tourism. The analysis also raises the need for discussions around what kind and whose heritage gets priority in planning for future sea level rise impacts.

Suggested Citation

  • Meghan C. L. Howey, 2020. "Harnessing Remote Sensing Derived Sea Level Rise Models to Assess Cultural Heritage Vulnerability: A Case Study from the Northwest Atlantic Ocean," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9429-:d:444066
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/22/9429/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/22/9429/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nicodemo Abate & Rosa Lasaponara, 2019. "Preventive Archaeology Based on Open Remote Sensing Data and Tools: The Cases of Sant’Arsenio (SA) and Foggia (FG), Italy," Sustainability, MDPI, vol. 11(15), pages 1-18, August.
    2. Mark D. McCoy, 2018. "The Race to Document Archaeological Sites Ahead of Rising Sea Levels: Recent Applications of Geospatial Technologies in the Archaeology of Polynesia," Sustainability, MDPI, vol. 10(1), pages 1-22, January.
    3. Ransom A. Myers & Boris Worm, 2003. "Rapid worldwide depletion of predatory fish communities," Nature, Nature, vol. 423(6937), pages 280-283, May.
    4. Lena Reimann & Athanasios T. Vafeidis & Sally Brown & Jochen Hinkel & Richard S. J. Tol, 2018. "Mediterranean UNESCO World Heritage at risk from coastal flooding and erosion due to sea-level rise," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andreea Marin-Pantelescu & Laurențiu Tăchiciu & Ionica Oncioiu & Mihaela Ștefan-Hint, 2022. "Erasmus Students’ Experiences as Cultural Visitors: Lessons in Destination Management," Sustainability, MDPI, vol. 14(5), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Speirs, Douglas C. & Greenstreet, Simon P.R. & Heath, Michael R., 2016. "Modelling the effects of fishing on the North Sea fish community size composition," Ecological Modelling, Elsevier, vol. 321(C), pages 35-45.
    2. Staffan Waldo & Anton Paulrud, 2017. "Reducing Greenhouse Gas Emissions in Fisheries: The Case of Multiple Regulatory Instruments in Sweden," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(2), pages 275-295, October.
    3. Shirvani Dastgerdi, Ahmadreza & Sargolini, Massimo & Broussard Allred, Shorna & Chatrchyan, Allison Morrill & Drescher, Michael & DeGeer, Christopher, 2022. "Climate change risk reduction in cultural landscapes: Insights from Cinque Terre and Waterloo," Land Use Policy, Elsevier, vol. 123(C).
    4. Nye, Janet A. & Gamble, Robert J. & Link, Jason S., 2013. "The relative impact of warming and removing top predators on the Northeast US large marine biotic community," Ecological Modelling, Elsevier, vol. 264(C), pages 157-168.
    5. Blasiak, Robert, 2015. "Balloon effects reshaping global fisheries," Marine Policy, Elsevier, vol. 57(C), pages 18-20.
    6. Yi Zhang & Yao Xu & Hao Kong & Gang Zhou, 2022. "Spatial-Temporal Evolution of Coupling Coordination between Green Transformation and the Quality of Economic Development," Sustainability, MDPI, vol. 14(23), pages 1-15, December.
    7. Vlad Rosca & Raluca Ignat, 2014. "The Sustainability of Fish Consumption in Romania: Customer Behaviour prior and after the Country`s Adherence to the EU," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 16(35), pages 243-243, February.
    8. Ainsworth, C.H. & Pitcher, T.J. & Heymans, J.J. & Vasconcellos, M., 2008. "Reconstructing historical marine ecosystems using food web models: Northern British Columbia from Pre-European contact to present," Ecological Modelling, Elsevier, vol. 216(3), pages 354-368.
    9. Vera Nikolić & Zlatko Nedić & Dubravka Škraba Jurlina & Vesna Djikanović & Tamara Kanjuh & Ana Marić & Predrag Simonović, 2023. "Status and Perspectives of the Ichthyofauna of the Labudovo okno Ramsar Site: An Analysis of 14 Years of Data," Sustainability, MDPI, vol. 15(12), pages 1-14, June.
    10. da Mosto, Jane & Bertolini, Camilla & Markandya, Anil & Nunes, Paulo A.L.D. & Spencer, Tom & Palaima, Arnas & Onofri, Laura, 2020. "Rethinking Venice from an Ecosystem Services Perspective," FACTS: Firms And Cities Towards Sustainability 308019, Fondazione Eni Enrico Mattei (FEEM) > FACTS: Firms And Cities Towards Sustainability.
    11. R. Quentin Grafton & Tom Kompas & Pham Van Ha, 2009. "Cod Today and None Tomorrow: The Economic Value of a Marine Reserve," Land Economics, University of Wisconsin Press, vol. 85(3), pages 454-469.
    12. Moses Majid Limuwa & Wales Singini & Trond Storebakken, 2018. "Is Fish Farming an Illusion for Lake Malawi Riparian Communities under Environmental Changes?," Sustainability, MDPI, vol. 10(5), pages 1-23, May.
    13. Sethi, Gautam & Costello, Christopher & Fisher, Anthony & Hanemann, Michael & Karp, Larry, 2005. "Fishery management under multiple uncertainty," Journal of Environmental Economics and Management, Elsevier, vol. 50(2), pages 300-318, September.
    14. Francesca Di Turo & Laura Medeghini, 2021. "How Green Possibilities Can Help in a Future Sustainable Conservation of Cultural Heritage in Europe," Sustainability, MDPI, vol. 13(7), pages 1-14, March.
    15. Flores, J.C., 2018. "Decreasing fractal dimensions as a strategy for oceanic wildlife conservation: Application to species with large migration patterns," Ecological Modelling, Elsevier, vol. 384(C), pages 30-33.
    16. Cissé, A.A. & Doyen, L. & Blanchard, F. & Béné, C. & Péreau, J.-C., 2015. "Ecoviability for small-scale fisheries in the context of food security constraints," Ecological Economics, Elsevier, vol. 119(C), pages 39-52.
    17. Robert T. Deacon & Dominic P. Parker & Christopher Costello, 2010. "Overcoming the common pool problem through voluntary cooperation: the rise and fall of a fishery cooperative," NBER Working Papers 16339, National Bureau of Economic Research, Inc.
    18. Zhang, Chongliang & Chen, Yong & Ren, Yiping, 2016. "The efficacy of fisheries closure in rebuilding depleted stocks: Lessons from size-spectrum modeling," Ecological Modelling, Elsevier, vol. 332(C), pages 59-66.
    19. Silvio Cristiano & Francesco Gonella, 2020. "‘Kill Venice’: a systems thinking conceptualisation of urban life, economy, and resilience in tourist cities," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-13, December.
    20. Rees, William E., 2006. "Globalization, trade and migration: Undermining sustainability," Ecological Economics, Elsevier, vol. 59(2), pages 220-225, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9429-:d:444066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.